Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2310.18237v2
- Date: Mon, 30 Oct 2023 16:55:43 GMT
- Title: Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks
- Authors: Jonayet Miah, Duc M Cao, Md Abu Sayed, and Md. Sabbirul Haque
- Abstract summary: Artistic style transfer involves fusing the content of one image with the artistic style of another to create unique visual compositions.
This paper presents a comprehensive overview of a novel technique for style transfer using Convolutional Neural Networks (CNNs)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artistic style transfer, a captivating application of generative artificial
intelligence, involves fusing the content of one image with the artistic style
of another to create unique visual compositions. This paper presents a
comprehensive overview of a novel technique for style transfer using
Convolutional Neural Networks (CNNs). By leveraging deep image representations
learned by CNNs, we demonstrate how to separate and manipulate image content
and style, enabling the synthesis of high-quality images that combine content
and style in a harmonious manner. We describe the methodology, including
content and style representations, loss computation, and optimization, and
showcase experimental results highlighting the effectiveness and versatility of
the approach across different styles and content
Related papers
- DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer [13.588643982359413]
Style transfer aims to fuse the artistic representation of a style image with the structural information of a content image.
Existing methods train specific networks or utilize pre-trained models to learn content and style features.
We propose a novel and training-free approach for style transfer, combining textual embedding with spatial features.
arXiv Detail & Related papers (2024-10-19T06:42:43Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - Rethink Arbitrary Style Transfer with Transformer and Contrastive Learning [11.900404048019594]
In this paper, we introduce an innovative technique to improve the quality of stylized images.
Firstly, we propose Style Consistency Instance Normalization (SCIN), a method to refine the alignment between content and style features.
In addition, we have developed an Instance-based Contrastive Learning (ICL) approach designed to understand relationships among various styles.
arXiv Detail & Related papers (2024-04-21T08:52:22Z) - Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt [12.27693060663517]
Artistic style transfer aims to transfer the learned artistic style onto an arbitrary content image, generating artistic stylized images.
We propose a novel pre-trained diffusion-based artistic style transfer method, called LSAST.
Our proposed method can generate more highly realistic artistic stylized images than the state-of-the-art artistic style transfer methods.
arXiv Detail & Related papers (2024-04-17T15:28:53Z) - DIFF-NST: Diffusion Interleaving For deFormable Neural Style Transfer [27.39248034592382]
We propose using a new class of models to perform style transfer while enabling deformable style transfer.
We show how leveraging the priors of these models can expose new artistic controls at inference time.
arXiv Detail & Related papers (2023-07-09T12:13:43Z) - ALADIN-NST: Self-supervised disentangled representation learning of
artistic style through Neural Style Transfer [60.6863849241972]
We learn a representation of visual artistic style more strongly disentangled from the semantic content depicted in an image.
We show that strongly addressing the disentanglement of style and content leads to large gains in style-specific metrics.
arXiv Detail & Related papers (2023-04-12T10:33:18Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss [51.309905690367835]
We introduce a novel arbitrary style transfer method with structure enhancement by combining the global and local loss.
Experimental results demonstrate that our method can generate higher-quality images with impressive visual effects.
arXiv Detail & Related papers (2022-07-23T07:02:57Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - Arbitrary Style Transfer via Multi-Adaptation Network [109.6765099732799]
A desired style transfer, given a content image and referenced style painting, would render the content image with the color tone and vivid stroke patterns of the style painting.
A new disentanglement loss function enables our network to extract main style patterns and exact content structures to adapt to various input images.
arXiv Detail & Related papers (2020-05-27T08:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.