AutoFLUKA: A Large Language Model Based Framework for Automating Monte Carlo Simulations in FLUKA
- URL: http://arxiv.org/abs/2410.15222v1
- Date: Sat, 19 Oct 2024 21:50:11 GMT
- Title: AutoFLUKA: A Large Language Model Based Framework for Automating Monte Carlo Simulations in FLUKA
- Authors: Zavier Ndum Ndum, Jian Tao, John Ford, Yang Liu,
- Abstract summary: Monte Carlo (MC) simulations are essential for replicating real-world scenarios across scientific and engineering fields.
Despite the robustness and versatility, FLUKA faces significant limitations in automation and integration with external post-processing tools.
This study explores the potential of Large Language Models (LLMs) and AI agents to address these limitations.
We introduce AutoFLUKA, an AI agent application developed using the LangChain Python Framework to automate typical MC simulation in FLUKA.
- Score: 6.571041942559539
- License:
- Abstract: Monte Carlo (MC) simulations, particularly using FLUKA, are essential for replicating real-world scenarios across scientific and engineering fields. Despite the robustness and versatility, FLUKA faces significant limitations in automation and integration with external post-processing tools, leading to workflows with a steep learning curve, which are time-consuming and prone to human errors. Traditional methods involving the use of shell and Python scripts, MATLAB, and Microsoft Excel require extensive manual intervention and lack flexibility, adding complexity to evolving scenarios. This study explores the potential of Large Language Models (LLMs) and AI agents to address these limitations. AI agents, integrate natural language processing with autonomous reasoning for decision-making and adaptive planning, making them ideal for automation. We introduce AutoFLUKA, an AI agent application developed using the LangChain Python Framework to automate typical MC simulation workflows in FLUKA. AutoFLUKA can modify FLUKA input files, execute simulations, and efficiently process results for visualization, significantly reducing human labor and error. Our case studies demonstrate that AutoFLUKA can handle both generalized and domain-specific cases, such as Microdosimetry, with an streamlined automated workflow, showcasing its scalability and flexibility. The study also highlights the potential of Retrieval Augmentation Generation (RAG) tools to act as virtual assistants for FLUKA, further improving user experience, time and efficiency. In conclusion, AutoFLUKA represents a significant advancement in automating MC simulation workflows, offering a robust solution to the inherent limitations. This innovation not only saves time and resources but also opens new paradigms for research and development in high energy physics, medical physics, nuclear engineering space and environmental science.
Related papers
- AdaptoML-UX: An Adaptive User-centered GUI-based AutoML Toolkit for Non-AI Experts and HCI Researchers [19.602247178319992]
We introduce AdaptoML-UX, an adaptive framework that incorporates automated feature engineering, machine learning, and incremental learning.
Our toolkit demonstrates the capability to adapt efficiently to diverse problem domains and datasets.
It supports model personalization through incremental learning, customizing models to individual user behaviors.
arXiv Detail & Related papers (2024-10-22T22:52:14Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAM is a novel multi-agent collaborations framework.
It aims to complete CFD simulation tasks with only natural language as input.
It harnesses the power of MetaGPT's assembly line paradigm.
arXiv Detail & Related papers (2024-07-31T04:01:08Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Automated machine learning: AI-driven decision making in business
analytics [0.0]
This paper analyzed the potential of AutoML for applications within business analytics.
The H2O AutoML framework was benchmarked against a manually tuned stacked ML model.
It is fast, easy to use, and delivers reliable results.
arXiv Detail & Related papers (2022-05-21T08:35:02Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
novel platform Resource-Aware AutoML (RA-AutoML)
RA-AutoML enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives.
arXiv Detail & Related papers (2020-10-30T19:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.