An Information-Theoretic Perspective on Variance-Invariance-Covariance Regularization
- URL: http://arxiv.org/abs/2303.00633v4
- Date: Thu, 2 May 2024 03:58:14 GMT
- Title: An Information-Theoretic Perspective on Variance-Invariance-Covariance Regularization
- Authors: Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim G. J. Rudner, Yann LeCun,
- Abstract summary: We present an information-theoretic perspective on the VICReg objective.
We derive a generalization bound for VICReg, revealing its inherent advantages for downstream tasks.
We introduce a family of SSL methods derived from information-theoretic principles that outperform existing SSL techniques.
- Score: 52.44068740462729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variance-Invariance-Covariance Regularization (VICReg) is a self-supervised learning (SSL) method that has shown promising results on a variety of tasks. However, the fundamental mechanisms underlying VICReg remain unexplored. In this paper, we present an information-theoretic perspective on the VICReg objective. We begin by deriving information-theoretic quantities for deterministic networks as an alternative to unrealistic stochastic network assumptions. We then relate the optimization of the VICReg objective to mutual information optimization, highlighting underlying assumptions and facilitating a constructive comparison with other SSL algorithms and derive a generalization bound for VICReg, revealing its inherent advantages for downstream tasks. Building on these results, we introduce a family of SSL methods derived from information-theoretic principles that outperform existing SSL techniques.
Related papers
- The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
We show that we can derive a well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training.
We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection and highly-calibrated predictive uncertainty estimates.
arXiv Detail & Related papers (2023-12-28T17:50:56Z) - Variance-Covariance Regularization Improves Representation Learning [28.341622247252705]
We adapt a self-supervised learning regularization technique to supervised learning contexts, introducing Variance-Covariance Regularization (VCReg)
We demonstrate that VCReg significantly enhances transfer learning for images and videos, achieving state-of-the-art performance across numerous tasks and datasets.
In summary, VCReg offers a universally applicable regularization framework that significantly advances transfer learning and highlights the connection between gradient starvation, neural collapse, and feature transferability.
arXiv Detail & Related papers (2023-06-23T05:01:02Z) - Rethinking Evaluation Protocols of Visual Representations Learned via
Self-supervised Learning [1.0499611180329804]
Self-supervised learning (SSL) is used to evaluate the quality of visual representations learned via self-supervised learning (SSL)
Existing SSL methods have shown good performances under those evaluation protocols.
We try to figure out the cause of performance sensitivity by conducting extensive experiments with state-of-the-art SSL methods.
arXiv Detail & Related papers (2023-04-07T03:03:19Z) - What Do We Maximize in Self-Supervised Learning? [17.94932034403123]
We show how information-theoretic quantities can be obtained for a deterministic network.
We empirically demonstrate the validity of our assumptions, confirming our novel understanding of VICReg.
We believe that the derivation and insights we obtain can be generalized to many other SSL methods.
arXiv Detail & Related papers (2022-07-20T04:44:26Z) - Contrastive and Non-Contrastive Self-Supervised Learning Recover Global
and Local Spectral Embedding Methods [19.587273175563745]
Self-Supervised Learning (SSL) surmises that inputs and pairwise positive relationships are enough to learn meaningful representations.
This paper proposes a unifying framework under the helm of spectral manifold learning to address those limitations.
arXiv Detail & Related papers (2022-05-23T17:59:32Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.