Full Eigenstate Thermalization via Free Cumulants in Quantum Lattice Systems
- URL: http://arxiv.org/abs/2303.00713v4
- Date: Mon, 2 Sep 2024 18:06:04 GMT
- Title: Full Eigenstate Thermalization via Free Cumulants in Quantum Lattice Systems
- Authors: Silvia Pappalardi, Felix Fritzsch, Tomaž Prosen,
- Abstract summary: Eigenstate-Thermalization-Hypothesis (ETH) has been established as the general framework to understand quantum statistical mechanics.
We show that the dynamics of four-time correlation functions are encoded in fourth-order free cumulants, as predicted by ETH.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Eigenstate-Thermalization-Hypothesis (ETH) has been established as the general framework to understand quantum statistical mechanics. Only recently has the attention been paid to so-called full ETH, which accounts for higher-order correlations among matrix elements, and that can be rationalized theoretically using the language of Free Probability. In this work, we perform the first numerical investigation of the full ETH in physical many-body systems with local interactions by testing the decomposition of higher-order correlators into thermal free cumulants for local operators. We perform exact diagonalization on two classes of local non-integrable (chaotic) quantum many-body systems: spin chain Hamiltonians and Floquet brickwork unitary circuits. We show that the dynamics of four-time correlation functions are encoded in fourth-order free cumulants, as predicted by ETH. Their dependence on frequency encodes the physical properties of local many-body systems and distinguishes them from structureless, rotationally invariant ensembles of random matrices.
Related papers
- Universal correlations in chaotic many-body quantum states: Fock-space formulation of Berrys random wave model [0.0]
We show that the randomness of chaotic eigenstates in interacting quantum systems hides subtle correlations imposed by their finite energy per particle.
These correlations are revealed when Berrys approach for chaotic eigenfunctions in single-particle systems is lifted into many-body space.
We then identify the universality of both the cross-correlations and the Gaussian distribution of expansion coefficients as the signatures of chaotic eigenstates.
arXiv Detail & Related papers (2024-03-15T09:26:17Z) - Generalized Free Cumulants for Quantum Chaotic Systems [0.0]
The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the emergence of statistical mechanics in isolated quantum systems.
We show that the ETH is a sufficient mechanism for thermalization, in general.
In particular, we show that reduced density matrices relax to their equilibrium form and that systems obey the Page curve at late times.
arXiv Detail & Related papers (2024-01-24T22:04:41Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Non-Markovian Stochastic Schr\"odinger Equation: Matrix Product State
Approach to the Hierarchy of Pure States [65.25197248984445]
We derive a hierarchy of matrix product states (HOMPS) for non-Markovian dynamics in open finite temperature.
The validity and efficiency of HOMPS is demonstrated for the spin-boson model and long chains where each site is coupled to a structured, strongly non-Markovian environment.
arXiv Detail & Related papers (2021-09-14T01:47:30Z) - Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics
of spectral functions [0.0]
The eigenstate thermalization hypothesis provides to date the most successful description of thermalization in isolated quantum systems.
We study the distribution of matrix elements for a class of operators in dual-unitary quantum circuits.
arXiv Detail & Related papers (2021-03-22T09:46:46Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Test of Eigenstate Thermalization Hypothesis Based on Local Random
Matrix Theory [4.014524824655106]
We numerically obtain a distribution of maximum fluctuations of eigenstate expectation values for different realizations of the interactions.
The ergodicity of our random matrix ensembles breaks down due to locality.
arXiv Detail & Related papers (2020-05-13T15:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.