論文の概要: Learning high-dimensional causal effect
- arxiv url: http://arxiv.org/abs/2303.00821v1
- Date: Wed, 1 Mar 2023 20:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 16:55:06.134839
- Title: Learning high-dimensional causal effect
- Title(参考訳): 高次元因果効果の学習
- Authors: Aayush Agarwal and Saksham Bassi
- Abstract要約: 本研究では,高次元の合成因果データセットを生成する手法を提案する。
合成データは、MNISTデータセットとベルヌーイ処理値を用いて因果効果をシミュレートする。
我々はDragonnetアーキテクチャと修正アーキテクチャを用いてこのデータセットを実験する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of high-dimensional causal inference datasets restricts the
exploration of complex deep models. In this work, we propose a method to
generate a synthetic causal dataset that is high-dimensional. The synthetic
data simulates a causal effect using the MNIST dataset with Bernoulli treatment
values. This provides an opportunity to study varieties of models for causal
effect estimation. We experiment on this dataset using Dragonnet architecture
(Shi et al. (2019)) and modified architectures. We use the modified
architectures to explore different types of initial Neural Network layers and
observe that the modified architectures perform better in estimations. We
observe that residual and transformer models estimate treatment effect very
closely without the need for targeted regularization, introduced by Shi et al.
(2019).
- Abstract(参考訳): 高次元因果推論データセットの不足は、複雑な深層モデルの探索を制限する。
本研究では,高次元の合成因果データセットを生成する手法を提案する。
合成データは、MNISTデータセットとベルヌーイ処理値を用いて因果効果をシミュレートする。
これは因果効果推定のための様々なモデルを研究する機会を与える。
このデータセットをdragonnet architecture (shi et al. (2019)) とmodified architecturesを使って実験した。
修正されたアーキテクチャを用いて、異なるタイプのニューラルネットワーク層を探索し、修正されたアーキテクチャが推定においてより良い性能を発揮することを観察する。
残差モデルと変圧器モデルでは, 目的の正則化を必要とせず, 治療効果を非常に密接に推定している(shi et al., 2019)。
関連論文リスト
- zGAN: An Outlier-focused Generative Adversarial Network For Realistic Synthetic Data Generation [0.0]
ブラックスワン」は古典的な機械学習モデルの性能に挑戦している。
本稿では、外部特性を持つ合成データを生成する目的で開発されたzGANモデルアーキテクチャの概要について述べる。
リアルな合成データ生成の有望な結果と、モデル性能のアップリフト能力を示す。
論文 参考訳(メタデータ) (2024-10-28T07:55:11Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
本研究では3次元地震データに適した新しい拡散モデル再構成フレームワークを提案する。
拡散モデルに3次元ニューラルネットワークアーキテクチャを導入し、2次元拡散モデルを3次元空間に拡張することに成功した。
本手法は、フィールドデータセットと合成データセットの両方に適用した場合、より優れた再構成精度を示す。
論文 参考訳(メタデータ) (2024-03-18T05:10:13Z) - Modified CycleGAN for the synthesization of samples for wheat head
segmentation [0.09999629695552192]
注釈付きデータセットがない場合は、モデル開発に合成データを使用することができる。
そこで我々は,小麦頭部分割のための現実的な注釈付き合成データセットを開発した。
その結果、Diceのスコアは内部データセットで83.4%、外部のGlobal Wheat Head Detectionデータセットで83.6%に達した。
論文 参考訳(メタデータ) (2024-02-23T06:42:58Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - Learning Latent Structural Causal Models [31.686049664958457]
機械学習タスクでは、画像ピクセルや高次元ベクトルのような低レベルのデータを扱うことが多い。
本稿では,潜在構造因果モデルの因果変数,構造,パラメータについて共同推論を行う,抽出可能な近似推定手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T20:09:44Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
ニューラルネットワーク翻訳(NMT)のデータスケーリング特性に及ぼすアーキテクチャとトレーニングデータ品質の影響について検討する。
データスケーリング指数は最小限の影響を受けており、より多くのデータを追加することで、極端に悪いアーキテクチャやトレーニングデータの補償が可能になることを示唆しています。
論文 参考訳(メタデータ) (2022-02-04T06:53:49Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Learning Variational Data Assimilation Models and Solvers [34.22350850350653]
データ同化のためのエンドツーエンドニューラルネットワークアーキテクチャを導入する。
提案するエンドツーエンド学習アーキテクチャの重要な特徴は、教師なし戦略と教師なし戦略の両方を用いてNNモデルをトレーニングできることである。
論文 参考訳(メタデータ) (2020-07-25T14:28:48Z) - Data from Model: Extracting Data from Non-robust and Robust Models [83.60161052867534]
この研究は、データとモデルの関係を明らかにするために、モデルからデータを生成する逆プロセスについて検討する。
本稿では,データ・トゥ・モデル(DtM)とデータ・トゥ・モデル(DfM)を連続的に処理し,特徴マッピング情報の喪失について検討する。
以上の結果から,DtMとDfMの複数シーケンスの後にも,特にロバストモデルにおいて精度低下が制限されることが示唆された。
論文 参考訳(メタデータ) (2020-07-13T05:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。