Learning high-dimensional causal effect
- URL: http://arxiv.org/abs/2303.00821v1
- Date: Wed, 1 Mar 2023 20:57:48 GMT
- Title: Learning high-dimensional causal effect
- Authors: Aayush Agarwal and Saksham Bassi
- Abstract summary: In this work, we propose a method to generate a synthetic causal dataset that is high-dimensional.
The synthetic data simulates a causal effect using the MNIST dataset with Bernoulli treatment values.
We experiment on this dataset using Dragonnet architecture and modified architectures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scarcity of high-dimensional causal inference datasets restricts the
exploration of complex deep models. In this work, we propose a method to
generate a synthetic causal dataset that is high-dimensional. The synthetic
data simulates a causal effect using the MNIST dataset with Bernoulli treatment
values. This provides an opportunity to study varieties of models for causal
effect estimation. We experiment on this dataset using Dragonnet architecture
(Shi et al. (2019)) and modified architectures. We use the modified
architectures to explore different types of initial Neural Network layers and
observe that the modified architectures perform better in estimations. We
observe that residual and transformer models estimate treatment effect very
closely without the need for targeted regularization, introduced by Shi et al.
(2019).
Related papers
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.
Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
We propose a novel diffusion model reconstruction framework tailored for 3D seismic data.
We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space.
Our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets.
arXiv Detail & Related papers (2024-03-18T05:10:13Z) - Modified CycleGAN for the synthesization of samples for wheat head
segmentation [0.09999629695552192]
In the absence of an annotated dataset, synthetic data can be used for model development.
We develop a realistic annotated synthetic dataset for wheat head segmentation.
The resulting model achieved a Dice score of 83.4% on an internal dataset and 83.6% on two external Global Wheat Head Detection datasets.
arXiv Detail & Related papers (2024-02-23T06:42:58Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - Data Scaling Laws in NMT: The Effect of Noise and Architecture [59.767899982937756]
We study the effect of varying the architecture and training data quality on the data scaling properties of Neural Machine Translation (NMT)
We find that the data scaling exponents are minimally impacted, suggesting that marginally worse architectures or training data can be compensated for by adding more data.
arXiv Detail & Related papers (2022-02-04T06:53:49Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Learning Variational Data Assimilation Models and Solvers [34.22350850350653]
We introduce end-to-end neural network architectures for data assimilation.
A key feature of the proposed end-to-end learning architecture is that we may train the NN models using both supervised and unsupervised strategies.
arXiv Detail & Related papers (2020-07-25T14:28:48Z) - Data from Model: Extracting Data from Non-robust and Robust Models [83.60161052867534]
This work explores the reverse process of generating data from a model, attempting to reveal the relationship between the data and the model.
We repeat the process of Data to Model (DtM) and Data from Model (DfM) in sequence and explore the loss of feature mapping information.
Our results show that the accuracy drop is limited even after multiple sequences of DtM and DfM, especially for robust models.
arXiv Detail & Related papers (2020-07-13T05:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.