論文の概要: X-Ray2EM: Uncertainty-Aware Cross-Modality Image Reconstruction from
X-Ray to Electron Microscopy in Connectomics
- arxiv url: http://arxiv.org/abs/2303.00882v1
- Date: Thu, 2 Mar 2023 00:52:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-03 16:37:00.604742
- Title: X-Ray2EM: Uncertainty-Aware Cross-Modality Image Reconstruction from
X-Ray to Electron Microscopy in Connectomics
- Title(参考訳): X線2EM:コネクトロミクスにおけるX線から電子顕微鏡への不確かさを意識した画像再構成
- Authors: Yicong Li, Yaron Meirovitch, Aaron T. Kuan, Jasper S. Phelps,
Alexandra Pacureanu, Wei-Chung Allen Lee, Nir Shavit, Lu Mi
- Abstract要約: 膜セグメンテーション品質を向上したEMライクな画像にX線画像を変換する不確実性を考慮した3D再構成モデルを提案する。
これは、よりシンプルで、より高速で、より正確なX線ベースのコネクトロミクスパイプラインを開発する可能性を示している。
- 参考スコア(独自算出の注目度): 55.6985304397137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comprehensive, synapse-resolution imaging of the brain will be crucial for
understanding neuronal computations and function. In connectomics, this has
been the sole purview of volume electron microscopy (EM), which entails an
excruciatingly difficult process because it requires cutting tissue into many
thin, fragile slices that then need to be imaged, aligned, and reconstructed.
Unlike EM, hard X-ray imaging is compatible with thick tissues, eliminating the
need for thin sectioning, and delivering fast acquisition, intrinsic alignment,
and isotropic resolution. Unfortunately, current state-of-the-art X-ray
microscopy provides much lower resolution, to the extent that segmenting
membranes is very challenging. We propose an uncertainty-aware 3D
reconstruction model that translates X-ray images to EM-like images with
enhanced membrane segmentation quality, showing its potential for developing
simpler, faster, and more accurate X-ray based connectomics pipelines.
- Abstract(参考訳): 脳の総合的、シナプス分解能イメージングは、神経計算と機能を理解するために不可欠である。
コネクトミクスでは、これはボリューム電子顕微鏡(em)の唯一のパービューであり、組織を多くの薄くて繊細なスライスに切断し、画像化し、アライメントし、再構成する必要があるため、非常に難しいプロセスを伴う。
EMとは異なり、硬X線イメージングは厚い組織と互換性があり、薄切片の必要をなくし、高速な取得、本質的なアライメント、等方分解能を提供する。
残念ながら、現在の最先端のx線顕微鏡はずっと低い解像度を提供しており、セグメンテーション膜が非常に難しい。
本研究では,x線画像をemライクな画像に変換する不確実性を考慮した3次元再構成モデルを提案し,よりシンプルで高速,より正確なx線ベースのコネクトミクスパイプラインの開発の可能性を示した。
関連論文リスト
- A Diffusion-based Xray2MRI Model: Generating Pseudo-MRI Volumes From one Single X-ray [6.014316825270666]
単一X線画像から擬似MRIボリュームを生成することができる新しい拡散型Xray2MRIモデルを提案する。
実験の結果,提案手法は実際のMRIスキャンを近似した擬似MRIシーケンスを生成することができることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:44:34Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
条件拡散過程として超スパースX線からのCT再構成をモデル化したDiffuX2CTを提案する。
これにより、DiffuX2CTは2次元X線から3次元構造情報を復元できる構造制御可能な再構成を実現する。
コントリビューションとして,LumbarVと呼ばれる実世界の腰椎CTデータセットを新しいベンチマークとして収集し,X線からのCT再構成の臨床的意義と性能を検証した。
論文 参考訳(メタデータ) (2024-07-18T14:20:04Z) - Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans [10.72672892416061]
過剰投与されたX線は、ある程度人間の健康への潜在的なリスクを重畳する。
ボリュームスキャンからX線画像へのデータ駆動アルゴリズムは、ペア化されたX線とボリュームデータの不足によって制限される。
我々は,3つの異なる画像領域からのコンテンツとスタイルのゆがみを利用して,X線画像をエンドツーエンドに合成するCT2X-GANを提案する。
論文 参考訳(メタデータ) (2024-04-18T04:25:56Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
本稿では,3次元CT画像の再構成のための自己駆動型生成対向ネットワークモデル(SdCT-GAN)を提案する。
識別器に新しいオートエンコーダ構造を導入することにより、画像の詳細により多くの注意を払っている。
LPIPS評価基準は,既存画像よりも微細な輪郭やテクスチャを定量的に評価できる。
論文 参考訳(メタデータ) (2023-09-10T08:16:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Subspace modeling for fast and high-sensitivity X-ray chemical imaging [4.062272647963248]
TXM-XANESイメージング技術は、マルチエネルギーのX線で一連の顕微鏡画像を取得して化学マップを得るという、新たなツールである。
高速かつ高感度なケミカルイメージングを実現するため,画像品質向上のためのシンプルで頑健なデノナイジング手法を提案する。
論文 参考訳(メタデータ) (2022-01-01T23:26:06Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。