Evolutionary Computation in Action: Feature Selection for Deep Embedding
Spaces of Gigapixel Pathology Images
- URL: http://arxiv.org/abs/2303.00943v2
- Date: Tue, 18 Apr 2023 16:50:16 GMT
- Title: Evolutionary Computation in Action: Feature Selection for Deep Embedding
Spaces of Gigapixel Pathology Images
- Authors: Azam Asilian Bidgoli, Shahryar Rahnamayan, Taher Dehkharghanian, Abtin
Riasatian, H.R. Tizhoosh
- Abstract summary: We introduce a new evolutionary approach for WSI representation based on large-scale multi-objective optimization (LSMOP) of deep embeddings.
We validate the proposed schemes using The Cancer Genome Atlas (TC) images in terms of WSI representation, classification accuracy, and feature quality.
The proposed evolutionary algorithm finds a very compact feature vector to represent a WSI with 8% higher accuracy compared to the codes provided by the state-of-the-art methods.
- Score: 0.6037276428689636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the main obstacles of adopting digital pathology is the challenge of
efficient processing of hyperdimensional digitized biopsy samples, called whole
slide images (WSIs). Exploiting deep learning and introducing compact WSI
representations are urgently needed to accelerate image analysis and facilitate
the visualization and interpretability of pathology results in a postpandemic
world. In this paper, we introduce a new evolutionary approach for WSI
representation based on large-scale multi-objective optimization (LSMOP) of
deep embeddings. We start with patch-based sampling to feed KimiaNet , a
histopathology-specialized deep network, and to extract a multitude of feature
vectors. Coarse multi-objective feature selection uses the reduced search space
strategy guided by the classification accuracy and the number of features. In
the second stage, the frequent features histogram (FFH), a novel WSI
representation, is constructed by multiple runs of coarse LSMOP. Fine
evolutionary feature selection is then applied to find a compact (short-length)
feature vector based on the FFH and contributes to a more robust deep-learning
approach to digital pathology supported by the stochastic power of evolutionary
algorithms. We validate the proposed schemes using The Cancer Genome Atlas
(TCGA) images in terms of WSI representation, classification accuracy, and
feature quality. Furthermore, a novel decision space for multicriteria decision
making in the LSMOP field is introduced. Finally, a patch-level visualization
approach is proposed to increase the interpretability of deep features. The
proposed evolutionary algorithm finds a very compact feature vector to
represent a WSI (almost 14,000 times smaller than the original feature vectors)
with 8% higher accuracy compared to the codes provided by the state-of-the-art
methods.
Related papers
- A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology [0.0]
Digital pathology is revolutionizing the field of pathology by enabling the digitization, storage, and analysis of tissue samples as whole slide images (WSIs)
WSIs are gigapixel files that capture the intricate details of tissue samples, providing a rich source of information for diagnostic and research purposes.
Due to their enormous size, representing these images as one compact vector is essential for many computational pathology tasks.
arXiv Detail & Related papers (2024-09-06T20:56:25Z) - GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
This paper presents a modified version of MultiResU-Net for histopathology image segmentation.
It is selected as the backbone for its ability to analyze and segment complex features at multiple scales.
We validate our approach on two diverse breast cancer histopathology image datasets.
arXiv Detail & Related papers (2024-06-12T19:17:17Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - An Efficient Cervical Whole Slide Image Analysis Framework Based on
Multi-scale Semantic and Spatial Features using Deep Learning [2.7218168309244652]
This study designs a novel inline connection network (InCNet) by enriching the multi-scale connectivity to build the lightweight model named You Only Look Cytopathology Once (YOLCO)
The proposed model allows the input size enlarged to megapixel that can stitch the WSI without any overlap by the average repeats.
Based on Transformer for classifying the integrated multi-scale multi-task features, the experimental results appear $0.872$ AUC score better and $2.51times$ faster than the best conventional method in WSI classification.
arXiv Detail & Related papers (2021-06-29T06:24:55Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.