RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation
- URL: http://arxiv.org/abs/2209.12468v1
- Date: Mon, 26 Sep 2022 07:18:00 GMT
- Title: RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation
- Authors: Reza Rasti, Armin Biglari, Mohammad Rezapourian, Ziyun Yang, Sina
Farsiu
- Abstract summary: Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
- Score: 3.57686754209902
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Optical coherence tomography (OCT) helps ophthalmologists assess macular
edema, accumulation of fluids, and lesions at microscopic resolution.
Quantification of retinal fluids is necessary for OCT-guided treatment
management, which relies on a precise image segmentation step. As manual
analysis of retinal fluids is a time-consuming, subjective, and error-prone
task, there is increasing demand for fast and robust automatic solutions. In
this study, a new convolutional neural architecture named RetiFluidNet is
proposed for multi-class retinal fluid segmentation. The model benefits from
hierarchical representation learning of textural, contextual, and edge features
using a new self-adaptive dual-attention (SDA) module, multiple self-adaptive
attention-based skip connections (SASC), and a novel multi-scale deep self
supervision learning (DSL) scheme. The attention mechanism in the proposed SDA
module enables the model to automatically extract deformation-aware
representations at different levels, and the introduced SASC paths further
consider spatial-channel interdependencies for concatenation of counterpart
encoder and decoder units, which improve representational capability.
RetiFluidNet is also optimized using a joint loss function comprising a
weighted version of dice overlap and edge-preserved connectivity-based losses,
where several hierarchical stages of multi-scale local losses are integrated
into the optimization process. The model is validated based on three publicly
available datasets: RETOUCH, OPTIMA, and DUKE, with comparisons against several
baselines. Experimental results on the datasets prove the effectiveness of the
proposed model in retinal OCT fluid segmentation and reveal that the suggested
method is more effective than existing state-of-the-art fluid segmentation
algorithms in adapting to retinal OCT scans recorded by various image scanning
instruments.
Related papers
- OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
We propose OCTAMamba, a novel U-shaped network based on the Mamba architecture to segment vasculature in OCTA accurately.
OCTAMamba integrates a Quad Stream Efficient Mining Embedding Module for local feature extraction, a Multi-Scale Dilated Asymmetric Convolution Module to capture multi-scale vasculature, and a Focused Feature Recalibration Module to filter noise and highlight target areas.
Our method achieves efficient global modeling and local feature extraction while maintaining linear complexity, making it suitable for low-computation medical applications.
arXiv Detail & Related papers (2024-09-12T12:47:34Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Evolutionary Computation in Action: Feature Selection for Deep Embedding
Spaces of Gigapixel Pathology Images [0.6037276428689636]
We introduce a new evolutionary approach for WSI representation based on large-scale multi-objective optimization (LSMOP) of deep embeddings.
We validate the proposed schemes using The Cancer Genome Atlas (TC) images in terms of WSI representation, classification accuracy, and feature quality.
The proposed evolutionary algorithm finds a very compact feature vector to represent a WSI with 8% higher accuracy compared to the codes provided by the state-of-the-art methods.
arXiv Detail & Related papers (2023-03-02T03:36:15Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
We propose Video-TransUNet, a deep architecture for segmentation in medical CT videos constructed by integrating temporal feature blending into the TransUNet deep learning framework.
In particular, our approach amalgamates strong frame representation via a ResNet CNN backbone, multi-frame feature blending via a Temporal Context Module, and reconstructive capabilities for multiple targets via a UNet-based convolutional-deconal architecture with multiple heads.
arXiv Detail & Related papers (2022-08-17T14:28:58Z) - MPG-Net: Multi-Prediction Guided Network for Segmentation of Retinal
Layers in OCT Images [11.370735571629602]
We propose a novel multiprediction guided attention network (MPG-Net) for automated retinal layer segmentation in OCT images.
MPG-Net consists of two major steps to strengthen the discriminative power of a U-shape Fully convolutional network (FCN) for reliable automated segmentation.
arXiv Detail & Related papers (2020-09-28T21:22:22Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.