Discrete-time Competing-Risks Regression with or without Penalization
- URL: http://arxiv.org/abs/2303.01186v2
- Date: Tue, 14 Nov 2023 19:45:52 GMT
- Title: Discrete-time Competing-Risks Regression with or without Penalization
- Authors: Tomer Meir and Malka Gorfine
- Abstract summary: This paper introduces a novel estimation procedure for discrete-time survival analysis with competing events.
We illustrate the benefits of our proposed approach by conducting a comprehensive simulation study.
- Score: 0.21756081703276003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many studies employ the analysis of time-to-event data that incorporates
competing risks and right censoring. Most methods and software packages are
geared towards analyzing data that comes from a continuous failure time
distribution. However, failure-time data may sometimes be discrete either
because time is inherently discrete or due to imprecise measurement. This paper
introduces a novel estimation procedure for discrete-time survival analysis
with competing events. The proposed approach offers two key advantages over
existing procedures: first, it expedites the estimation process for a large
number of unique failure time points; second, it allows for straightforward
integration and application of widely used regularized regression and screening
methods. We illustrate the benefits of our proposed approach by conducting a
comprehensive simulation study. Additionally, we showcase the utility of our
procedure by estimating a survival model for the length of stay of patients
hospitalized in the intensive care unit, considering three competing events:
discharge to home, transfer to another medical facility, and in-hospital death.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
We introduce CenTime, a novel approach to survival analysis that directly estimates the time to event.
Our method features an innovative event-conditional censoring mechanism that performs robustly even when uncensored data is scarce.
Our results indicate that CenTime offers state-of-the-art performance in predicting time-to-death while maintaining comparable ranking performance.
arXiv Detail & Related papers (2023-09-07T17:07:33Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
We propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework.
OTCSurv uses survival durations from both censored and observed data to define temporal distinctiveness.
We conduct experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI)
arXiv Detail & Related papers (2023-08-24T22:36:22Z) - Accounting For Informative Sampling When Learning to Forecast Treatment
Outcomes Over Time [66.08455276899578]
We show that informative sampling can prohibit accurate estimation of treatment outcomes if not properly accounted for.
We present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting.
We propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs.
arXiv Detail & Related papers (2023-06-07T08:51:06Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - PyDTS: A Python Package for Discrete-Time Survival (Regularized)
Regression with Competing Risks [0.5735035463793008]
PyDTS is a package for simulating, estimating and evaluating semi-parametric competing-risks models for discrete-time survival data.
A simulation study showcases flexibility and accuracy of the package.
arXiv Detail & Related papers (2022-04-12T11:58:26Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.