Subset-Based Instance Optimality in Private Estimation
- URL: http://arxiv.org/abs/2303.01262v3
- Date: Wed, 29 May 2024 01:37:23 GMT
- Title: Subset-Based Instance Optimality in Private Estimation
- Authors: Travis Dick, Alex Kulesza, Ziteng Sun, Ananda Theertha Suresh,
- Abstract summary: We show how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties.
Our algorithm simultaneously matches or exceeds the performance of existing algorithms under a range of distributional assumptions.
- Score: 23.173651165908282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new definition of instance optimality for differentially private estimation algorithms. Our definition requires an optimal algorithm to compete, simultaneously for every dataset $D$, with the best private benchmark algorithm that (a) knows $D$ in advance and (b) is evaluated by its worst-case performance on large subsets of $D$. That is, the benchmark algorithm need not perform well when potentially extreme points are added to $D$; it only has to handle the removal of a small number of real data points that already exist. This makes our benchmark significantly stronger than those proposed in prior work. We nevertheless show, for real-valued datasets, how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties, including means, quantiles, and $\ell_p$-norm minimizers. For means in particular, we provide a detailed analysis and show that our algorithm simultaneously matches or exceeds the asymptotic performance of existing algorithms under a range of distributional assumptions.
Related papers
- Certified Multi-Fidelity Zeroth-Order Optimization [4.450536872346658]
We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a function $f$ at various approximation levels.
We propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity for any Lipschitz function $f$.
We also prove an $f$-dependent lower bound showing that this algorithm has a near-optimal cost complexity.
arXiv Detail & Related papers (2023-08-02T07:20:37Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball.
We propose a new algorithmic framework, ProjUnit, for private mean estimation.
Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm.
arXiv Detail & Related papers (2023-06-07T14:07:35Z) - A Near-Optimal Algorithm for Univariate Zeroth-Order Budget Convex
Optimization [4.608510640547952]
We prove near-optimal optimization error guarantees for Dy Search.
We show that the classical dependence on the global Lipschitz constant in the error bounds is an artifact of the granularity of the budget.
arXiv Detail & Related papers (2022-08-13T19:57:04Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Learning to Hash Robustly, with Guarantees [79.68057056103014]
In this paper, we design an NNS algorithm for the Hamming space that has worst-case guarantees essentially matching that of theoretical algorithms.
We evaluate the algorithm's ability to optimize for a given dataset both theoretically and practically.
Our algorithm has a 1.8x and 2.1x better recall on the worst-performing queries to the MNIST and ImageNet datasets.
arXiv Detail & Related papers (2021-08-11T20:21:30Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Grouped Variable Selection with Discrete Optimization: Computational and
Statistical Perspectives [9.593208961737572]
We present a new algorithmic framework for grouped variable selection that is based on discrete mathematical optimization.
Our methodology covers both high-dimensional linear regression and non- additive modeling with sparse programming.
Our exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can solve the associated mixed integer (MIP) problem to certified optimality.
arXiv Detail & Related papers (2021-04-14T19:21:59Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.