論文の概要: Experimental error suppression in Cross-Resonance gates via multi-derivative pulse shaping
- arxiv url: http://arxiv.org/abs/2303.01427v4
- Date: Thu, 12 Sep 2024 13:04:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 22:51:28.635003
- Title: Experimental error suppression in Cross-Resonance gates via multi-derivative pulse shaping
- Title(参考訳): 多導波パルス整形によるクロス共振ゲートの実験的誤差抑制
- Authors: Boxi Li, Tommaso Calarco, Felix Motzoi,
- Abstract要約: マルチキュービットで固定周波数の超伝導チップ上のクラウドコンピューティングゲートは、1%の誤差範囲に留まり続けている。
強い衝動と多くの研究にもかかわらず、これらのマルチキュービットデバイスにおけるエラー抑制の実験的な実証は依然として困難である。
そこで本研究では,多導波性,多制約パルス整形に基づく単純な制御手法を用いて,この目標を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While quantum circuits are reaching impressive widths in the hundreds of qubits, their depths have not been able to keep pace. In particular, cloud computing gates on multi-qubit, fixed-frequency superconducting chips continue to hover around the 1% error range, contrasting with the progress seen on carefully designed two-qubit chips, where error rates have been pushed towards 0.1%. Despite the strong impetus and a plethora of research, experimental demonstration of error suppression on these multi-qubit devices remains challenging, primarily due to the wide distribution of qubit parameters and the demanding calibration process required for advanced control methods. Here, we achieve this goal, using a simple control method based on multi-derivative, multi-constraint pulse shaping, which acts simultaneously against multiple error sources. Our approach establishes a two to fourfold improvement on the default calibration scheme, demonstrated on four qubits on the IBM Quantum Platform with limited and intermittent access, enabling these large-scale fixed-frequency systems to fully take advantage of their superior coherence times. The achieved CNOT fidelities of 99.7(1)% on those publically available qubits come from both coherent control error suppression and accelerated gate time.
- Abstract(参考訳): 量子回路は数百量子ビットで目覚ましい幅に達していますが、その深さは維持できませんでした。
特に、マルチキュービットで固定周波数の超伝導チップ上のクラウドコンピューティングゲートは、注意深く設計された2量子ビットチップの進歩とは対照的に、1%の誤差範囲に留まり続けている。
強いインペタスと多くの研究にもかかわらず、これらのマルチキュービットデバイスにおけるエラー抑制の実験的な実証は、主に量子ビットパラメータの広範な分布と高度な制御法に必要なキャリブレーションプロセスのために、依然として困難である。
本稿では,複数の誤差源に対して同時に作用する多重微分型多重制約パルス整形に基づく単純な制御手法を用いて,この目標を達成する。
提案手法は,IBM Quantum Platform上の4つのキュービットに対して,限定的かつ断続的なアクセスで2~4倍の精度向上を実現し,これらの大規模固定周波数系がより優れたコヒーレンス時間を十分に活用できることを示す。
一般に利用可能な量子ビットの99.7(1)%のCNOT忠実度は、コヒーレント制御誤差の抑制とゲート時間の加速の両方から得られる。
関連論文リスト
- High-precision pulse calibration of tunable couplers for high-fidelity two-qubit gates in superconducting quantum processors [25.085187014541432]
本稿では,キュービットとカプラの強い結合を利用したパルス校正手法を実験的に導入し,実験を行った。
本手法は, カプラフラックスパルス過渡波の短時間および長時間のステップ応答を直接測定する。
ダイアバティックCZおよびiSWAPゲートを99.61pm0.04%および99.82pm0.02%の忠実度で実装し,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-19T08:55:14Z) - Designing Fast Quantum Gates with Tunable Couplers: A Reinforcement
Learning Approach [0.0]
本稿では,超伝導量子ビットにおける高速な2量子ゲート生成のための強化学習の有用性について述べる。
本稿では,RLコントローラが一方向のゲートパルス列を自律的に検出する上で,極めて有効であることを示す。
このようなゲートパルスシーケンスは、計算部分空間の内外へのリークダイナミックスを制御することで、漏洩空間を巧みに活用する。
論文 参考訳(メタデータ) (2023-12-26T23:52:57Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
単一電子電荷量子ビットの量子制御のための数値最適化多パルスフレームワークを提案する。
新規な制御方式は、キュービットを断熱的に操作すると同時に、高速で一般的な単一キュービット回転を行う能力も保持する。
論文 参考訳(メタデータ) (2023-03-08T19:00:02Z) - Fast high-fidelity composite gates in superconducting qubits: Beating
the Fourier leakage limit [0.0]
本稿では,超伝導量子ビットにおける量子制御手法を提案する。
我々は、量子ビット状態間の完全かつ部分的な人口移動と、3つの基本的な単一量子ビットの量子ゲートを生成するために、我々のアプローチを利用する。
論文 参考訳(メタデータ) (2022-05-09T10:10:05Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
超伝導フラクソニウム量子ビットは、大規模量子コンピューティングへの道のトランスモンに代わる有望な代替手段を提供する。
マルチキュービットデバイスにおける大きな課題は、スケーラブルなクロストークのないマルチキュービットアーキテクチャの実験的なデモンストレーションである。
ここでは、可変カプラ素子を持つ2量子フッソニウム系量子プロセッサを提案する。
論文 参考訳(メタデータ) (2022-03-30T13:44:52Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
実効多部絡み(GME)認証のための条件付き目撃手法を導入する。
線形な二分割数における絡み合いの検出は, 多数の測定値によって線形にスケールし, GMEの認証に十分であることを示す。
本手法は, 距離3の位相的カラーコードとフラグベースの耐故障バージョンにおける安定化作用素の雑音可読化に適用する。
論文 参考訳(メタデータ) (2020-10-06T18:00:07Z) - High-fidelity, high-scalability two-qubit gate scheme for
superconducting qubits [16.01171409402694]
超伝導量子回路における固定周波数キュービットと可変カプラを利用する新しい2量子ゲート方式を実験的に実証した。
この方式では、制御線が少なく、クロストーク効果を低減し、校正手順を単純化するが、高忠実度99.5%の30nsで制御Zゲートを生成する。
我々の実証は、高忠実度量子演算の大規模実装の道を開くものである。
論文 参考訳(メタデータ) (2020-06-21T17:55:28Z) - Benchmarking Coherent Errors in Controlled-Phase Gates due to Spectator
Qubits [0.0]
制御相ゲートにおける位相誤差は、ゲートに係わる2つのキュービットを1つ以上のオブザーバキュービットに分散結合させることにより評価する。
本研究は,マルチキュービット設定におけるオン/オフ比が有限である2量子ゲートの忠実度に対する限界を理解するために重要である。
論文 参考訳(メタデータ) (2020-05-12T16:44:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。