Chemically Transferable Generative Backmapping of Coarse-Grained
Proteins
- URL: http://arxiv.org/abs/2303.01569v1
- Date: Thu, 2 Mar 2023 20:51:57 GMT
- Title: Chemically Transferable Generative Backmapping of Coarse-Grained
Proteins
- Authors: Soojung Yang and Rafael G\'omez-Bombarelli
- Abstract summary: Coarse-graining (CG) accelerates simulations of protein dynamics by simulating sets of atoms as singular beads.
Backmapping is the opposite operation of bringing lost atomistic details back from the CG representation.
This work builds a fast, transferable, and reliable generative backmapping tool for CG protein representations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coarse-graining (CG) accelerates molecular simulations of protein dynamics by
simulating sets of atoms as singular beads. Backmapping is the opposite
operation of bringing lost atomistic details back from the CG representation.
While machine learning (ML) has produced accurate and efficient CG simulations
of proteins, fast and reliable backmapping remains a challenge. Rule-based
methods produce poor all-atom geometries, needing computationally costly
refinement through additional simulations. Recently proposed ML approaches
outperform traditional baselines but are not transferable between proteins and
sometimes generate unphysical atom placements with steric clashes and
implausible torsion angles. This work addresses both issues to build a fast,
transferable, and reliable generative backmapping tool for CG protein
representations. We achieve generalization and reliability through a combined
set of innovations: representation based on internal coordinates; an
equivariant encoder/prior; a custom loss function that helps ensure local
structure, global structure, and physical constraints; and expert curation of
high-quality out-of-equilibrium protein data for training. Our results pave the
way for out-of-the-box backmapping of coarse-grained simulations for arbitrary
proteins.
Related papers
- Long-context Protein Language Model [76.95505296417866]
Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design.
Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths.
We propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built off selective structured state-space models.
We also introduce its graph-contextual variant, LC-PLM-G, which contextualizes protein-protein interaction graphs for a second stage of training.
arXiv Detail & Related papers (2024-10-29T16:43:28Z) - The Latent Road to Atoms: Backmapping Coarse-grained Protein Structures with Latent Diffusion [19.85659309869674]
Latent Diffusion Backmapping (LDB) is a novel approach leveraging denoising diffusion within latent space to address these challenges.
We evaluate LDB's state-of-the-art performance on three distinct protein datasets.
Our results position LDB as a powerful and scalable approach for backmapping, effectively bridging the gap between CG simulations and atomic-level analyses in computational biology.
arXiv Detail & Related papers (2024-10-17T06:38:07Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
Deep generative modeling techniques have been employed to generate novel protein conformations.
We propose a force-guided SE(3) diffusion model, ConfDiff, for protein conformation generation.
arXiv Detail & Related papers (2024-03-21T02:44:08Z) - Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
coarse-grained (CG) model with similar prediction performance has been a long-standing challenge.
We develop a bottom-up CG force field with chemical transferability, which can be used for extrapolative molecular dynamics on new sequences.
We demonstrate that the model successfully predicts folded structures, intermediates, metastable folded and unfolded basins, and the fluctuations of intrinsically disordered proteins.
arXiv Detail & Related papers (2023-10-27T17:10:23Z) - DiAMoNDBack: Diffusion-denoising Autoregressive Model for
Non-Deterministic Backmapping of C{\alpha} Protein Traces [0.0]
DiAMoNDBack is an autoregressive denoising diffusion probability model for non-Deterministic Backmapping.
We train DiAMoNDBack over 65k+ structures from Protein Data Bank (PDB) and validate it in applications to a hold-out PDB test set.
We make DiAMoNDBack publicly available as a free and open source Python package.
arXiv Detail & Related papers (2023-07-23T23:05:08Z) - Top-down machine learning of coarse-grained protein force-fields [2.1485350418225244]
Our methodology involves simulating proteins with molecular dynamics and utilizing the resulting trajectories to train a neural network potential.
Remarkably, this method requires only the native conformation of proteins, eliminating the need for labeled data.
By applying Markov State Models, native-like conformations of the simulated proteins can be predicted from the coarse-grained simulations.
arXiv Detail & Related papers (2023-06-20T08:31:24Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.