論文の概要: JOSA: Joint surface-based registration with atlas construction enables
accurate alignment of the brain geometry and function
- arxiv url: http://arxiv.org/abs/2303.01592v3
- Date: Tue, 12 Sep 2023 15:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 17:29:37.171897
- Title: JOSA: Joint surface-based registration with atlas construction enables
accurate alignment of the brain geometry and function
- Title(参考訳): JOSA:アトラス構築による関節表面の登録は脳の形状と機能の正確なアライメントを可能にする
- Authors: Jian Li, Greta Tuckute, Evelina Fedorenko, Brian L. Edlow, Adrian V.
Dalca, Bruce Fischl
- Abstract要約: JOSAは、幾何学と関数のミスマッチを共同でモデル化する、新しい皮質登録フレームワークである。
推論時に関数データを必要とすることなく、幾何と関数の両方において優れた登録性能を達成する。
- 参考スコア(独自算出の注目度): 10.584603337042532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surface-based cortical registration is an important topic in medical image
analysis and facilitates many downstream applications. Current approaches for
cortical registration are mainly driven by geometric features, such as sulcal
depth and curvature, and often assume that registration of folding patterns
leads to alignment of brain function. However, functional variability of
anatomically corresponding areas across subjects has been widely reported,
particularly in higher-order cognitive areas. In this work, we present JOSA, a
novel cortical registration framework that jointly models the mismatch between
geometry and function while simultaneously learning an unbiased
population-specific atlas. Using a semi-supervised training strategy, JOSA
achieves superior registration performance in both geometry and function
without requiring functional data at inference. This learning framework can be
extended to any auxiliary data to guide spherical registration that is
available during training but is difficult or impossible to obtain during
inference, such as parcellations, architectonic identity, transcriptomic
information, and molecular profiles.
- Abstract(参考訳): 表面ベースの皮質登録は、医用画像解析において重要なトピックであり、多くの下流応用を促進する。
現在の皮質登録のアプローチは、主にsulcal depthやcurvatureのような幾何学的特徴によって行われており、しばしば折りたたみパターンの登録が脳機能のアライメントにつながると仮定している。
しかし,特に高次認知領域では,解剖学的対応領域の機能的変動が広く報告されている。
本研究は,人口固有のアトラスを同時に学習しながら,幾何学と関数のミスマッチを共同でモデル化する新しい皮質登録フレームワークJOSAを提案する。
JOSAは、半教師付きトレーニング戦略を用いて、推論時に関数データを必要とせず、幾何と関数の両方において優れた登録性能を達成する。
この学習フレームワークは、トレーニング中に利用可能な球面登録をガイドするために任意の補助データに拡張することができ、パーセレーション、構造的アイデンティティ、転写情報、分子プロファイルなど、推論中に取得することが困難または不可能である。
関連論文リスト
- GESH-Net: Graph-Enhanced Spherical Harmonic Convolutional Networks for Cortical Surface Registration [8.896542371748115]
本稿では,皮質表面画像登録技術を研究するためのディープラーニングモデルを構築した。
マルチスケールのカスケード構造に基づく教師なしの皮質表面登録ネットワークを設計する。
グラフ対応モジュールを登録ネットワークに導入し、グラフアテンションモジュールを使用してネットワークがグローバルな機能を学ぶのを支援する。
論文 参考訳(メタデータ) (2024-10-18T18:21:47Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - JOSA: Joint surface-based registration and atlas construction of brain
geometry and function [10.584603337042532]
JOSAは、幾何学と関数のミスマッチを共同でモデル化する、新しい皮質登録フレームワークである。
幾何と関数の両方において最先端の手法よりも優れた登録性能を実現するが、推論時に関数データを必要としない。
脳構造と機能の共同解析を用いた登録手法の今後の発展に関する新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-22T02:16:48Z) - Automatic Landmark Detection and Registration of Brain Cortical Surfaces
via Quasi-Conformal Geometry and Convolutional Neural Networks [17.78250777571423]
本稿では,脳皮質表面の自動的ランドマーク検出と登録のための新しい枠組みを提案する。
まず,ランドマーク曲線の自動抽出を可能にするランドマーク検出ネットワーク(LD-Net)を開発した。
次に,検出されたランドマークと準コンフォーマル理論を用いて表面登録を行う。
論文 参考訳(メタデータ) (2022-08-15T05:47:51Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - Kinship Verification Based on Cross-Generation Feature Interaction
Learning [53.62256887837659]
顔画像からの血縁検証は、コンピュータビジョンの応用において、新しいが挑戦的な技術として認識されている。
本稿では,頑健な親族関係検証のためのクロスジェネレーション・インタラクション・ラーニング(CFIL)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-07T01:50:50Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
この貢献は、特徴空間変換のレンズを通して機械学習モデルを解釈する新しいアプローチを提案する。
非条件的および条件付きポストホック診断ツールの拡張に使用できる。
提案手法の可能性を実証するために,46特徴のリモートセンシング土地被覆分類の事例研究を行った。
論文 参考訳(メタデータ) (2021-04-09T10:48:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。