Spatio-Temporal Structure Consistency for Semi-supervised Medical Image
Classification
- URL: http://arxiv.org/abs/2303.01707v1
- Date: Fri, 3 Mar 2023 04:18:09 GMT
- Title: Spatio-Temporal Structure Consistency for Semi-supervised Medical Image
Classification
- Authors: Wentao Lei, Lei Liu, Li Liu
- Abstract summary: We propose a novel Spatio-Temporal Structure Consistent (STSC) learning framework.
Specifically, a gram matrix is derived to combine the spatial structure consistency and temporal structure consistency.
We show that our method outperforms state-of-the-art SSL methods.
- Score: 8.656046905043876
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Intelligent medical diagnosis has shown remarkable progress based on the
large-scale datasets with precise annotations. However, fewer labeled images
are available due to significantly expensive cost for annotating data by
experts. To fully exploit the easily available unlabeled data, we propose a
novel Spatio-Temporal Structure Consistent (STSC) learning framework.
Specifically, a gram matrix is derived to combine the spatial structure
consistency and temporal structure consistency together. This gram matrix
captures the structural similarity among the representations of different
training samples. At the spatial level, our framework explicitly enforces the
consistency of structural similarity among different samples under
perturbations. At the temporal level, we consider the consistency of the
structural similarity in different training iterations by digging out the
stable sub-structures in a relation graph. Experiments on two medical image
datasets (i.e., ISIC 2018 challenge and ChestX-ray14) show that our method
outperforms state-of-the-art SSL methods. Furthermore, extensive qualitative
analysis on the Gram matrices and heatmaps by Grad-CAM are presented to
validate the effectiveness of our method.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - Aligning in a Compact Space: Contrastive Knowledge Distillation between Heterogeneous Architectures [4.119589507611071]
We propose a Low-Frequency Components-based Contrastive Knowledge Distillation (LFCC) framework that significantly enhances the performance of feature-based distillation.
Specifically, we designe a set of multi-scale low-pass filters to extract the low-frequency components of intermediate features from both the teacher and student models.
We show that LFCC achieves superior performance on the challenging benchmarks of ImageNet-1K and CIFAR-100.
arXiv Detail & Related papers (2024-05-28T18:44:42Z) - ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models.
We present a simple fix to this problem by constructing processes that fully exploit the structures, hence the name ComboStoc.
arXiv Detail & Related papers (2024-05-22T15:23:10Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
Deep learning-based semantic segmentation in neuroimaging currently requires high-resolution scans and extensive annotated datasets.
We present a novel synthetic framework for the task of lesion segmentation, extending the capabilities of the established SynthSeg approach.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - Macroscale fracture surface segmentation via semi-supervised learning considering the structural similarity [1.3654846342364308]
Three datasets were created to analyze the influence of structural similarity on the segmentation capability.
We implemented a weak-to-strong consistency regularization for semi-supervised learning.
Our approach reduced the number of labeled images required for training by a factor of 6.
arXiv Detail & Related papers (2024-03-27T08:21:41Z) - Sequential Visual and Semantic Consistency for Semi-supervised Text
Recognition [56.968108142307976]
Scene text recognition (STR) is a challenging task that requires large-scale annotated data for training.
Most existing STR methods resort to synthetic data, which may introduce domain discrepancy and degrade the performance of STR models.
This paper proposes a novel semi-supervised learning method for STR that incorporates word-level consistency regularization from both visual and semantic aspects.
arXiv Detail & Related papers (2024-02-24T13:00:54Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Pair-Variational Autoencoders (PairVAE) for Linking and
Cross-Reconstruction of Characterization Data from Complementary Structural
Characterization Techniques [0.0]
In material research, structural characterization often requires multiple complementary techniques to obtain a holistic morphological view of the synthesized material.
It is useful to have machine learning models that can be trained on paired structural characterization data from multiple techniques so that the model can generate one set of characterization data from the other.
In this paper we demonstrate one such machine learning workflow, PairVAE, that works with data from Small Angle X-Ray Scattering (SAXS) that presents information about bulk morphology and images from Scanning Electron Microscopy (SEM) that presents two-dimensional local structural information of the sample.
arXiv Detail & Related papers (2023-05-25T20:45:36Z) - Decoding Structure-Spectrum Relationships with Physically Organized
Latent Spaces [6.36075035468233]
A new semi-supervised machine learning method for the discovery of structure-spectrum relationships is developed and demonstrated.
This method constructs a one-to-one mapping between individual structure descriptors and spectral trends.
The RankAAE methodology produces a continuous and interpretable latent space, where each dimension can track an individual structure descriptor.
arXiv Detail & Related papers (2023-01-11T21:30:22Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.