論文の概要: One-class Damage Detector Prototyping Fully-Convolutional Data
Description for Prognostics
- arxiv url: http://arxiv.org/abs/2303.01732v2
- Date: Sat, 18 Mar 2023 02:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 23:16:20.350630
- Title: One-class Damage Detector Prototyping Fully-Convolutional Data
Description for Prognostics
- Title(参考訳): 診断のための一級損傷検出器プロトタイピング完全畳み込みデータ記述
- Authors: Takato Yasuno, Masahiro Okano, Riku Ogata, Junichiro Fujii
- Abstract要約: 一級損傷検出手法は、通常の画像だけでパラメータを最適化できるという利点がある。
完全畳み込みデータ記述(FCDD)を用いた一級損傷検出の自動化プロトタイプを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is important for infrastructure managers to maintain a high standard to
ensure user satisfaction during a lifecycle of infrastructures. Surveillance
cameras and visual inspections have enabled progress toward automating the
detection of anomalous features and assessing the occurrence of the
deterioration. Frequently, collecting damage data constraints time consuming
and repeated inspections. One-class damage detection approach has a merit that
only the normal images enables us to optimize the parameters. Simultaneously,
the visual explanation using the heat map enable us to understand the localized
anomalous feature. We propose a prototype to automate one-class damage
detection using the fully-convolutional data description (FCDD). We also
visualize the explanation of the damage feature using the up-sampling-based
activation map with the Gaussian up-sampling from the receptive field of the
fully convolutional network (FCN). We demonstrate it in experimental studies:
concrete damage and steel corrosion and mention its usefulness and future
works.
- Abstract(参考訳): インフラストラクチャマネージャは、インフラストラクチャのライフサイクル中にユーザの満足度を確保するために、高い基準を維持することが重要です。
監視カメラと視覚検査は異常な特徴の検出と劣化の発生を自動化するための進歩をもたらした。
しばしば、損傷データ収集に要する時間と繰り返し検査を行う。
一級損傷検出手法は、通常の画像だけでパラメータを最適化できるという利点がある。
同時に、ヒートマップを用いた視覚的説明により、局所的な異常な特徴を理解することができる。
完全畳み込みデータ記述(FCDD)を用いて一級損傷検出を自動化するプロトタイプを提案する。
また,完全畳み込みネットワーク(FCN)の受容場からのガウスアップサンプリングを用いたアップサンプリングに基づくアクティベーションマップを用いて,損傷特性の可視化を行った。
コンクリート損傷と鋼材の腐食を実験的に検証し,その有用性と今後の課題について述べる。
関連論文リスト
- Imagery Dataset for Condition Monitoring of Synthetic Fibre Ropes [0.0]
このデータセットは、正常なSFRと欠陥のあるSFRの両方を表す合計6,942の生画像からなる。
データセットは、オブジェクトの検出、分類、セグメンテーションを含むコンピュータビジョンアプリケーションをサポートするリソースとして機能する。
このデータセットを生成する目的は、自動欠陥検出システムの開発を支援することである。
論文 参考訳(メタデータ) (2023-09-29T08:42:44Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Disaster Anomaly Detector via Deeper FCDDs for Explainable Initial
Responses [0.0]
あらゆる災害イベントにおいて、最初の応答は72時間以内に救助し、回復を急ぐ鍵である。
機械学習アルゴリズムのうち、深い異常検出は日常の特徴とは異なる破壊的特徴を検出するのに有効である。
本稿では,より深い完全畳み込みデータ記述(FCDD)を利用した異常検出アプリケーションを提案する。
VGG16バックボーンを持つ深いFCDDは、他のベースラインであるCNN27、ResNet101、Inceptionv3より一貫して優れていた。
論文 参考訳(メタデータ) (2023-06-05T00:44:39Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
本研究は,人工知能(AI)と多視点画像を用いた,より信頼性の高い建築損傷分類を実現することを目的とする。
提案モデルでは, ハリケーン・ハーヴェイに続き, 調査対象の建物について, 専門家ラベル付きジオタグ付き画像を含む偵察視覚データセットを訓練し, 検証した。
論文 参考訳(メタデータ) (2022-08-06T01:04:13Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。