Large-scale simulations of Floquet physics on near-term quantum computers
- URL: http://arxiv.org/abs/2303.02209v2
- Date: Mon, 25 Nov 2024 14:52:20 GMT
- Title: Large-scale simulations of Floquet physics on near-term quantum computers
- Authors: Timo Eckstein, Refik Mansuroglu, Piotr Czarnik, Jian-Xin Zhu, Michael J. Hartmann, Lukasz Cincio, Andrew T. Sornborger, Zoƫ Holmes,
- Abstract summary: We introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware.
Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian.
- Score: 0.3252295747842729
- License:
- Abstract: Periodically driven quantum systems exhibit a diverse set of phenomena but are more challenging to simulate than their equilibrium counterparts. Here, we introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware. Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian. This allows prior methods for time-independent simulation to be lifted to simulate Floquet systems. We use the periodically driven biaxial next-nearest neighbor Ising (BNNNI) model, a natural test bed for quantum frustrated magnetism and criticality, as a case study to illustrate our algorithm. We implemented a 20-qubit simulation of the driven two-dimensional BNNNI model on Quantinuum's trapped ion quantum computer. Our error analysis shows that QHiFFS exhibits not only a cubic advantage in driving frequency $\omega$ but also a linear advantage in simulation time $t$ compared to~Trotterization.
Related papers
- Trotterless Simulation of Open Quantum Systems for NISQ Quantum Devices [0.0]
We propose a new simulation method based on the derivation of a Kraus operator series representation of the system.
We identify a class of open quantum systems for which this method produces circuits of time-independent depth.
arXiv Detail & Related papers (2024-10-04T18:37:49Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Ancillary entangling Floquet kicks for accelerating quantum algorithms [0.21990652930491855]
We accelerate quantum simulation using digital multi-qubit gates that entangle primary system qubits with the ancillary qubits.
For simple but nontrivial short-ranged, infinite long-ranged transverse-field Ising models, and the hydrogen molecule model after qubit encoding, we show improvement in the time to solution by one hundred percent.
arXiv Detail & Related papers (2024-08-23T19:40:24Z) - Quantum Simulations for Strong-Field QED [0.0]
We perform quantum simulations of strong-field QED (SFQED) in $3+1$ dimensions.
The interactions relevant for Breit-Wheeler pair-production are transformed into a quantum circuit.
Quantum simulations of a "null double slit" experiment are found to agree well with classical simulations.
arXiv Detail & Related papers (2023-11-30T03:05:26Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Efficient Fully-Coherent Quantum Signal Processing Algorithms for
Real-Time Dynamics Simulation [3.3917542048743865]
We develop fully-coherent simulation algorithms based on quantum signal processing (QSP)
We numerically analyze these algorithms by applying them to the simulation of spin dynamics of the Heisenberg model.
arXiv Detail & Related papers (2021-10-21T17:56:33Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.