Online simulator-based experimental design for cognitive model selection
- URL: http://arxiv.org/abs/2303.02227v1
- Date: Fri, 3 Mar 2023 21:41:01 GMT
- Title: Online simulator-based experimental design for cognitive model selection
- Authors: Alexander Aushev, Aini Putkonen, Gregoire Clarte, Suyog Chandramouli,
Luigi Acerbi, Samuel Kaski, Andrew Howes
- Abstract summary: We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
- Score: 74.76661199843284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of model selection with a limited number of experimental trials
has received considerable attention in cognitive science, where the role of
experiments is to discriminate between theories expressed as computational
models. Research on this subject has mostly been restricted to optimal
experiment design with analytically tractable models. However, cognitive models
of increasing complexity, with intractable likelihoods, are becoming more
commonplace. In this paper, we propose BOSMOS: an approach to experimental
design that can select between computational models without tractable
likelihoods. It does so in a data-efficient manner, by sequentially and
adaptively generating informative experiments. In contrast to previous
approaches, we introduce a novel simulator-based utility objective for design
selection, and a new approximation of the model likelihood for model selection.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can
accurately select models in up to 2 orders of magnitude less time than existing
LFI alternatives for three cognitive science tasks: memory retention,
sequential signal detection and risky choice.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Designing Optimal Behavioral Experiments Using Machine Learning [8.759299724881219]
We provide a tutorial on leveraging recent advances in BOED and machine learning to find optimal experiments for any kind of model.
We consider theories of how people balance exploration and exploitation in multi-armed bandit decision-making tasks.
As compared to experimental designs commonly used in the literature, we show that our optimal designs more efficiently determine which of a set of models best account for individual human behavior.
arXiv Detail & Related papers (2023-05-12T18:24:30Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
We consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem.
The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.
arXiv Detail & Related papers (2022-05-20T07:02:03Z) - Bayesian Optimal Experimental Design for Simulator Models of Cognition [14.059933880568908]
We combine recent advances in BOED and approximate inference for intractable models to find optimal experimental designs.
Our simulation experiments on multi-armed bandit tasks show that our method results in improved model discrimination and parameter estimation.
arXiv Detail & Related papers (2021-10-29T09:04:01Z) - Gradient-based Bayesian Experimental Design for Implicit Models using
Mutual Information Lower Bounds [20.393359858407162]
We introduce a framework for Bayesian experimental design (BED) with implicit models, where the data-generating distribution is intractable but sampling from it is still possible.
In order to find optimal experimental designs for such models, our approach maximises mutual information lower bounds that are parametrised by neural networks.
By training a neural network on sampled data, we simultaneously update network parameters and designs using gradient-ascent.
arXiv Detail & Related papers (2021-05-10T13:59:25Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions.
For more effective design and investigation, simulations require input from past experimental data to better predict future performance.
We describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model.
arXiv Detail & Related papers (2021-03-19T02:00:14Z) - Bayesian Experimental Design for Implicit Models by Mutual Information
Neural Estimation [16.844481439960663]
Implicit models, where the data-generation distribution is intractable but sampling is possible, are ubiquitous in the natural sciences.
A fundamental question is how to design experiments so that the collected data are most useful.
For implicit models, however, this approach is severely hampered by the high computational cost of computing posteriors.
We show that training a neural network to maximise a lower bound on MI allows us to jointly determine the optimal design and the posterior.
arXiv Detail & Related papers (2020-02-19T12:09:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.