Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics
- URL: http://arxiv.org/abs/2306.02015v1
- Date: Sat, 3 Jun 2023 06:19:20 GMT
- Title: Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics
- Authors: Zhantao Chen, Cheng Peng, Alexander N. Petsch, Sathya R. Chitturi,
Alana Okullo, Sugata Chowdhury, Chun Hong Yoon, Joshua J. Turner
- Abstract summary: We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
- Score: 54.172707311728885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced experimental measurements are crucial for driving theoretical
developments and unveiling novel phenomena in condensed matter and material
physics, which often suffer from the scarcity of facility resources and
increasing complexities. To address the limitations, we introduce a methodology
that combines machine learning with Bayesian optimal experimental design
(BOED), exemplified with x-ray photon fluctuation spectroscopy (XPFS)
measurements for spin fluctuations. Our method employs a neural network model
for large-scale spin dynamics simulations for precise distribution and utility
calculations in BOED. The capability of automatic differentiation from the
neural network model is further leveraged for more robust and accurate
parameter estimation. Our numerical benchmarks demonstrate the superior
performance of our method in guiding XPFS experiments, predicting model
parameters, and yielding more informative measurements within limited
experimental time. Although focusing on XPFS and spin fluctuations, our method
can be adapted to other experiments, facilitating more efficient data
collection and accelerating scientific discoveries.
Related papers
- Reliable edge machine learning hardware for scientific applications [34.87898436984149]
Extreme data rate scientific experiments create massive amounts of data that require efficient ML edge processing.
We discuss approaches to developing and validating reliable algorithms at the scientific edge under such strict latency, resource, power, and area requirements.
arXiv Detail & Related papers (2024-06-27T20:45:08Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via
Simulation-based Synthetic Data Augmentation and Multitask Learning [4.633997895806144]
We consider quantitative analyses of spectral data using laser-induced breakdown spectroscopy.
We address the small size of training data available, and the validation of the predictions during inference on unknown data.
arXiv Detail & Related papers (2022-10-07T18:00:09Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions.
For more effective design and investigation, simulations require input from past experimental data to better predict future performance.
We describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model.
arXiv Detail & Related papers (2021-03-19T02:00:14Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Exploring Sensitivity of ICF Outputs to Design Parameters in Experiments
Using Machine Learning [0.021987601456703473]
Building a sustainable burn platform in inertial confinement fusion (ICF) requires an understanding of the physical processes and effects that key experimental design changes have on implosion performance.
In this paper, we leverage developments in machine learning (ML) and methods for ML feature importance/sensitivity analysis to identify complex relationships in ways that are difficult to process using expert judgment alone.
We show that RF models are capable of learning and predicting on ICF experimental data with high accuracy, and we extract feature importance metrics that provide insight into the physical significance of different controllable design inputs for various ICF design configurations.
arXiv Detail & Related papers (2020-10-08T20:54:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.