Decision Support System for Chronic Diseases Based on Drug-Drug
Interactions
- URL: http://arxiv.org/abs/2303.02405v1
- Date: Sat, 4 Mar 2023 12:44:38 GMT
- Title: Decision Support System for Chronic Diseases Based on Drug-Drug
Interactions
- Authors: Tian Bian, Yuli Jiang, Jia Li, Tingyang Xu, Yu Rong, Yi Su, Timothy
Kwok, Helen Meng, Hong Cheng
- Abstract summary: This paper presents a Decision Support System, called DSSDDI, based on drug-drug interactions to support doctors prescribing decisions.
The DDI module learns safer and more effective drug representations from the drug-drug interactions.
The MD module considers the representations of patients and drugs as context, DDI and patients' similarity as treatment, and medication use as outcome.
- Score: 67.9840225237587
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many patients with chronic diseases resort to multiple medications to relieve
various symptoms, which raises concerns about the safety of multiple medication
use, as severe drug-drug antagonism can lead to serious adverse effects or even
death. This paper presents a Decision Support System, called DSSDDI, based on
drug-drug interactions to support doctors prescribing decisions. DSSDDI
contains three modules, Drug-Drug Interaction (DDI) module, Medical Decision
(MD) module and Medical Support (MS) module. The DDI module learns safer and
more effective drug representations from the drug-drug interactions. To capture
the potential causal relationship between DDI and medication use, the MD module
considers the representations of patients and drugs as context, DDI and
patients' similarity as treatment, and medication use as outcome to construct
counterfactual links for the representation learning. Furthermore, the MS
module provides drug candidates to doctors with explanations. Experiments on
the chronic data collected from the Hong Kong Chronic Disease Study Project and
a public diagnostic data MIMIC-III demonstrate that DSSDDI can be a reliable
reference for doctors in terms of safety and efficiency of clinical diagnosis,
with significant improvements compared to baseline methods.
Related papers
- RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction [4.044376666671973]
We propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction.
A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets.
arXiv Detail & Related papers (2024-08-27T17:13:56Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
Adverse drug-drug interactions can compromise the effectiveness of concurrent drug administration.
Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge.
We propose TextDDI with a language model-based DDI predictor and a reinforcement learning(RL)-based information selector.
arXiv Detail & Related papers (2024-03-13T09:42:46Z) - Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning [39.66471292348325]
We present KnowDDI, a graph neural network-based method that addresses the challenge of discovering potential drug-drug interactions.
KnowDDI enhances drug representations by adaptively leveraging rich neighborhood information from large biomedical knowledge graphs.
As an original open-source tool, KnowDDI can help detect possible interactions in a broad range of relevant interaction prediction tasks.
arXiv Detail & Related papers (2023-11-25T15:44:28Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - DDI Prediction via Heterogeneous Graph Attention Networks [0.0]
Polypharmacy is the use of multiple drugs together.
Drug-drug interaction (DDI) is the activity that occurs when the impact of one drug changes when combined with another.
We present a novel heterogeneous graph attention model, HAN-DDI, to predict drug-drug interactions.
arXiv Detail & Related papers (2022-07-12T16:59:06Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
We propose a DDI-controllable drug recommendation model named SafeDrug to leverage drugs' molecule structures and model DDIs explicitly.
On a benchmark dataset, our SafeDrug is relatively shown to reduce DDI by 19.43% and improves 2.88% on Jaccard similarity between recommended and actually prescribed drug combinations over previous approaches.
arXiv Detail & Related papers (2021-05-05T00:20:48Z) - Two Step Joint Model for Drug Drug Interaction Extraction [82.49278654043577]
Drug-Drug Interaction (DDI) Extraction from Drug Labels challenge of Text Analysis Conference (TAC) 2018.
We propose a two step joint model to detect DDI and it's related mentions jointly.
A sequence tagging system (CNN-GRU encoder-decoder) finds precipitants first and search its fine-grained Trigger and determine the DDI for each precipitant in the second step.
arXiv Detail & Related papers (2020-08-28T15:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.