Natural Language-Assisted Multi-modal Medication Recommendation
- URL: http://arxiv.org/abs/2501.07166v1
- Date: Mon, 13 Jan 2025 09:51:50 GMT
- Title: Natural Language-Assisted Multi-modal Medication Recommendation
- Authors: Jie Tan, Yu Rong, Kangfei Zhao, Tian Bian, Tingyang Xu, Junzhou Huang, Hong Cheng, Helen Meng,
- Abstract summary: We introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR)
The NLA-MMR is a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly.
In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications.
- Score: 97.07805345563348
- License:
- Abstract: Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.
Related papers
- Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients [47.68396964741116]
We propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed) to enhance accuracy for rare diseases.
It employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes.
It provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
arXiv Detail & Related papers (2024-03-26T14:36:22Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - MedSumm: A Multimodal Approach to Summarizing Code-Mixed Hindi-English
Clinical Queries [16.101969130235055]
We introduce the Multimodal Medical Codemixed Question Summarization MMCQS dataset.
This dataset combines Hindi-English codemixed medical queries with visual aids.
Our dataset, code, and pre-trained models will be made publicly available.
arXiv Detail & Related papers (2024-01-03T07:58:25Z) - ABiMed: An intelligent and visual clinical decision support system for
medication reviews and polypharmacy management [3.843569766201585]
The aim of ABiMed is to design an innovative clinical decision support system for medication reviews and polypharmacy management.
ABiMed associates several approaches: guidelines implementation, but the automatic extraction of patient data from the GP's electronic health record and its transfer to the pharmacist, and the visual presentation of contextualized drug knowledge using visual analytics.
arXiv Detail & Related papers (2023-12-13T11:06:45Z) - Knowledge-Induced Medicine Prescribing Network for Medication Recommendation [9.591674293850557]
This study proposes a novel Knowledge-Induced Medicine Prescribing Network (KindMed) to recommend medicines.
We leverage hierarchical sequence learning to discover and fuse temporal dynamics of clinical (i.e., diagnosis and procedures) and medicine streams across patients' historical admissions to foster personalized recommendations.
We validated the effectiveness of our KindMed on the augmented real-world EHR cohorts, achieving improved recommendation performances against a handful of graph-driven baselines.
arXiv Detail & Related papers (2023-10-23T04:15:39Z) - DKINet: Medication Recommendation via Domain Knowledge Informed Deep Learning [12.609882335746859]
Medication recommendation is a fundamental yet crucial branch of healthcare.
Previous studies have primarily focused on learning patient representation from electronic health records.
We propose a knowledge injection module that addresses the effective integration of domain knowledge with complex clinical manifestations.
arXiv Detail & Related papers (2023-05-31T07:22:15Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
We propose the Re$3$Writer method with retrieval-augmented generation and knowledge-grounded reasoning.
We demonstrate the effectiveness of our method in generating patient discharge instructions.
arXiv Detail & Related papers (2022-10-23T16:34:39Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics.
We propose Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines.
We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-14T10:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.