論文の概要: Comparative Studies of Unsupervised and Supervised Learning Methods
based on Multimedia Applications
- arxiv url: http://arxiv.org/abs/2303.02446v1
- Date: Sat, 4 Mar 2023 16:11:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-07 19:39:09.823616
- Title: Comparative Studies of Unsupervised and Supervised Learning Methods
based on Multimedia Applications
- Title(参考訳): マルチメディア応用に基づく教師なし・教師なし学習法の比較研究
- Authors: Amitesh Kumar Singam, Benny L\"ovstr\"om, Wlodek J. Kulesza
- Abstract要約: 我々は、参照ビデオの品質評価は、参照ビデオが部分的に利用できる状況において最も必要とされるものであることを優先した。
我々の研究の関心は、人間の視覚的特徴に基づく1つのモデルに効果的な特徴を定式化し、融合することにある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the mobile communication field, some of the video applications boosted the
interest of robust methods for video quality assessment. Out of all existing
methods, We Preferred, No Reference Video Quality Assessment is the one which
is most needed in situations where the handiness of reference video is
partially available. Our research interest lies in formulating and melding
effective features into one model based on human visualizing characteristics.
Our work explores comparative study between Supervised and unsupervised
learning methods. Therefore, we implemented support vector regression algorithm
as NR-based Video Quality Metric(VQM) for quality estimation with simplified
input features. We concluded that our proposed model exhibited sparseness even
after dimension reduction for objective scores of SSIM quality metric.
- Abstract(参考訳): モバイル通信分野では、ビデオアプリケーションの一部は、ビデオ品質評価のための堅牢な手法の関心を高めた。
既存のすべての手法の中で、参照ビデオの品質評価は、参照ビデオが部分的に利用できる状況において最も必要である。
我々の研究の関心は、人間の視覚的特徴に基づく1つのモデルに効果的な特徴を定式化し、融合することにある。
本研究は,教師なし学習法と教師なし学習法の比較研究である。
そこで我々は, 簡易な入力特徴を持つ品質推定のために, NRベースのビデオ品質基準(VQM)としてサポートベクタ回帰アルゴリズムを実装した。
提案手法は,SSIM品質測定値の客観的スコアに対して,次元の縮小後も疎度を示した。
関連論文リスト
- Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - A Deep Learning based No-reference Quality Assessment Model for UGC
Videos [44.00578772367465]
従来のビデオ品質評価(VQA)研究では、画像認識モデルまたは画像品質評価(IQA)モデルを使用して、品質回帰のためのビデオのフレームレベルの特徴を抽出している。
ビデオフレームの生画素から高品質な空間特徴表現を学習するために,エンドツーエンドの空間特徴抽出ネットワークを訓練する,非常に単純で効果的なVQAモデルを提案する。
より優れた品質認識機能により、単純な多層認識層(MLP)ネットワークのみを用いてチャンクレベルの品質スコアに回帰し、時間平均プーリング戦略を採用してビデオを得る。
論文 参考訳(メタデータ) (2022-04-29T12:45:21Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
本チュートリアルは、画像品質評価(IQA)の基礎的理論、方法論、現状の進歩を聴衆に提供する。
まず,視覚刺激を適切に選択する方法に着目し,主観的品質評価手法を再考する。
手書きのエンジニアリングと(深い)学習ベースの手法の両方をカバーします。
論文 参考訳(メタデータ) (2021-10-19T02:38:46Z) - Group-aware Contrastive Regression for Action Quality Assessment [85.43203180953076]
ビデオ間の関係は、より正確な行動品質評価のための重要な手がかりとなることを示す。
提案手法は従来の手法よりも大きなマージンを達成し,3つのベンチマークで新たな最先端の手法を確立する。
論文 参考訳(メタデータ) (2021-08-17T17:59:39Z) - Regression or Classification? New Methods to Evaluate No-Reference
Picture and Video Quality Models [45.974399400141685]
粗いレベルでの非参照品質モデルの評価と比較のための2つの新しい手法を提案する。
我々は、最近の画像とビデオの品質データセットに基づいて、人気のあるノン参照品質モデルのベンチマーク実験を行う。
論文 参考訳(メタデータ) (2021-01-30T05:40:14Z) - Study on the Assessment of the Quality of Experience of Streaming Video [117.44028458220427]
本稿では,ストリーミング映像のQoEの主観的推定に対する様々な客観的要因の影響について検討する。
本論文では標準的および手作り的特徴を示し,その相関とp値を示す。
SQoE-IIIデータベースは、これまでで最大の、そして最も現実的なデータベースだ。
論文 参考訳(メタデータ) (2020-12-08T18:46:09Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
実例に基づく情報ノイズコントラスト推定訓練に意味クラス正の付加を施すことの利点について検討する。
本稿では,インフォネッションNCEの損失を改善するための,自己指導型協調学習手法を提案する。
本研究では,2つの下流タスク(行動認識とビデオ検索)における学習表現の質を評価する。
論文 参考訳(メタデータ) (2020-10-19T17:59:01Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
ブラインドまたはノン参照画像品質評価(NR-IQA)は基本的な問題であり、未解決であり、難しい問題である。
マルチタスク学習に基づく簡易かつ効果的な汎用的ノンリフレクション(NR)画像品質評価フレームワークを提案する。
このモデルでは、歪み型と主観的な人間のスコアを用いて画質を推定する。
論文 参考訳(メタデータ) (2020-06-06T05:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。