ESD: Expected Squared Difference as a Tuning-Free Trainable Calibration
Measure
- URL: http://arxiv.org/abs/2303.02472v2
- Date: Thu, 18 Jan 2024 07:27:09 GMT
- Title: ESD: Expected Squared Difference as a Tuning-Free Trainable Calibration
Measure
- Authors: Hee Suk Yoon, Joshua Tian Jin Tee, Eunseop Yoon, Sunjae Yoon, Gwangsu
Kim, Yingzhen Li, Chang D. Yoo
- Abstract summary: Expected Squared Difference ( ESD) is a tuning-free trainable calibration objective loss.
We show that ESD yields the best-calibrated results compared with previous approaches.
ESD drastically improves the computational costs required for calibration during training.
- Score: 35.996971010199196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studies have shown that modern neural networks tend to be poorly calibrated
due to over-confident predictions. Traditionally, post-processing methods have
been used to calibrate the model after training. In recent years, various
trainable calibration measures have been proposed to incorporate them directly
into the training process. However, these methods all incorporate internal
hyperparameters, and the performance of these calibration objectives relies on
tuning these hyperparameters, incurring more computational costs as the size of
neural networks and datasets become larger. As such, we present Expected
Squared Difference (ESD), a tuning-free (i.e., hyperparameter-free) trainable
calibration objective loss, where we view the calibration error from the
perspective of the squared difference between the two expectations. With
extensive experiments on several architectures (CNNs, Transformers) and
datasets, we demonstrate that (1) incorporating ESD into the training improves
model calibration in various batch size settings without the need for internal
hyperparameter tuning, (2) ESD yields the best-calibrated results compared with
previous approaches, and (3) ESD drastically improves the computational costs
required for calibration during training due to the absence of internal
hyperparameter. The code is publicly accessible at
https://github.com/hee-suk-yoon/ESD.
Related papers
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks [3.5284544394841117]
We show that decoupling the training of feature extraction layers and classification layers in over-parametrized DNN architectures significantly improves model calibration.
We illustrate these methods improve calibration across ViT and WRN architectures for several image classification benchmark datasets.
arXiv Detail & Related papers (2024-05-02T11:36:17Z) - Probabilistic Calibration by Design for Neural Network Regression [2.3020018305241337]
We introduce a novel end-to-end model training procedure called Quantile Recalibration Training.
We demonstrate the performance of our method in a large-scale experiment involving 57 regression datasets.
arXiv Detail & Related papers (2024-03-18T17:04:33Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - A Close Look into the Calibration of Pre-trained Language Models [56.998539510508515]
Pre-trained language models (PLMs) may fail in giving reliable estimates of their predictive uncertainty.
We study the dynamic change in PLMs' calibration performance in training.
We extend two recently proposed learnable methods that directly collect data to train models to have reasonable confidence estimations.
arXiv Detail & Related papers (2022-10-31T21:31:07Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
We introduce a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised.
We also propose a meta-learning framework that uses DECE to optimise for validation set calibration.
arXiv Detail & Related papers (2021-06-17T15:47:50Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - On Calibration of Mixup Training for Deep Neural Networks [1.6242924916178283]
We argue and provide empirical evidence that, due to its fundamentals, Mixup does not necessarily improve calibration.
Our loss is inspired by Bayes decision theory and introduces a new training framework for designing losses for probabilistic modelling.
We provide state-of-the-art accuracy with consistent improvements in calibration performance.
arXiv Detail & Related papers (2020-03-22T16:54:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.