Feature Clipping for Uncertainty Calibration
- URL: http://arxiv.org/abs/2410.19796v1
- Date: Wed, 16 Oct 2024 06:44:35 GMT
- Title: Feature Clipping for Uncertainty Calibration
- Authors: Linwei Tao, Minjing Dong, Chang Xu,
- Abstract summary: Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
- Score: 24.465567005078135
- License:
- Abstract: Deep neural networks (DNNs) have achieved significant success across various tasks, but ensuring reliable uncertainty estimates, known as model calibration, is crucial for their safe and effective deployment. Modern DNNs often suffer from overconfidence, leading to miscalibration. We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue. FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples while maintaining the information in low calibration error samples. This process reduces the overconfidence in predictions, improving the overall calibration of the model. Our extensive experiments on datasets such as CIFAR-10, CIFAR-100, and ImageNet, and models including CNNs and transformers, demonstrate that FC consistently enhances calibration performance. Additionally, we provide a theoretical analysis that validates the effectiveness of our method. As the first calibration technique based on feature modification, feature clipping offers a novel approach to improving model calibration, showing significant improvements over both post-hoc and train-time calibration methods and pioneering a new avenue for feature-based model calibration.
Related papers
- Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors [22.39558434131574]
We introduce the concept of consistency as an alternative perspective on model calibration.
We propose a post-hoc calibration method called Consistency (CC) which adjusts confidence based on the model's consistency across inputs.
We show that performing perturbations at the logit level significantly improves computational efficiency.
arXiv Detail & Related papers (2024-10-16T06:55:02Z) - A Confidence Interval for the $\ell_2$ Expected Calibration Error [35.88784957918326]
We develop confidence intervals $ell$ Expected the Error (ECE)
We consider top-1-to-$k$ calibration, which includes both the popular notion of confidence calibration as well as calibration.
For a debiased estimator of the ECE, we show normality, but with different convergence rates and variances for calibrated and misd models.
arXiv Detail & Related papers (2024-08-16T20:00:08Z) - C-TPT: Calibrated Test-Time Prompt Tuning for Vision-Language Models via Text Feature Dispersion [54.81141583427542]
In deep learning, test-time adaptation has gained attention as a method for model fine-tuning without the need for labeled data.
This paper explores calibration during test-time prompt tuning by leveraging the inherent properties of CLIP.
We present a novel method, Calibrated Test-time Prompt Tuning (C-TPT), for optimizing prompts during test-time with enhanced calibration.
arXiv Detail & Related papers (2024-03-21T04:08:29Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Revisiting Calibration for Question Answering [16.54743762235555]
We argue that the traditional evaluation of calibration does not reflect usefulness of the model confidence.
We propose a new calibration metric, MacroCE, that better captures whether the model assigns low confidence to wrong predictions and high confidence to correct predictions.
arXiv Detail & Related papers (2022-05-25T05:49:56Z) - Meta-Calibration: Learning of Model Calibration Using Differentiable
Expected Calibration Error [46.12703434199988]
We introduce a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised.
We also propose a meta-learning framework that uses DECE to optimise for validation set calibration.
arXiv Detail & Related papers (2021-06-17T15:47:50Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.