Adversarial Sampling for Fairness Testing in Deep Neural Network
- URL: http://arxiv.org/abs/2303.02874v1
- Date: Mon, 6 Mar 2023 03:55:37 GMT
- Title: Adversarial Sampling for Fairness Testing in Deep Neural Network
- Authors: Tosin Ige, William Marfo, Justin Tonkinson, Sikiru Adewale, Bolanle
Hafiz Matti
- Abstract summary: adversarial sampling to test for fairness in prediction of deep neural network model across different classes of image in a given dataset.
We trained our neural network model on the original image, and without training our model on the perturbed or attacked image.
When we feed the adversarial samplings to our model, it was able to predict the original category/ class of the image the adversarial sample belongs to.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this research, we focus on the usage of adversarial sampling to test for
the fairness in the prediction of deep neural network model across different
classes of image in a given dataset. While several framework had been proposed
to ensure robustness of machine learning model against adversarial attack, some
of which includes adversarial training algorithm. There is still the pitfall
that adversarial training algorithm tends to cause disparity in accuracy and
robustness among different group. Our research is aimed at using adversarial
sampling to test for fairness in the prediction of deep neural network model
across different classes or categories of image in a given dataset. We
successfully demonstrated a new method of ensuring fairness across various
group of input in deep neural network classifier. We trained our neural network
model on the original image, and without training our model on the perturbed or
attacked image. When we feed the adversarial samplings to our model, it was
able to predict the original category/ class of the image the adversarial
sample belongs to. We also introduced and used the separation of concern
concept from software engineering whereby there is an additional standalone
filter layer that filters perturbed image by heavily removing the noise or
attack before automatically passing it to the network for classification, we
were able to have accuracy of 93.3%. Cifar-10 dataset have ten categories of
dataset, and so, in order to account for fairness, we applied our hypothesis
across each categories of dataset and were able to get a consistent result and
accuracy.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeed is an evolutionary strategy-based algorithmic framework for generating photo-realistic natural adversarial samples.
We employ CMA-ES to optimize the search for an initial seed vector, which, when processed by the Conditional Diffusion Model, results in the natural adversarial sample misclassified by the Model.
Experiments show that generated adversarial images are of high image quality, raising concerns about generating harmful content bypassing safety classifiers.
arXiv Detail & Related papers (2024-02-07T09:39:29Z) - A Perturbation Resistant Transformation and Classification System for
Deep Neural Networks [0.685316573653194]
Deep convolutional neural networks accurately classify a diverse range of natural images, but may be easily deceived when designed.
In this paper, we design a multi-pronged training, unbounded input transformation, and image ensemble system that is attack and not easily estimated.
arXiv Detail & Related papers (2022-08-25T02:58:47Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Dataset Bias Mitigation Through Analysis of CNN Training Scores [0.0]
We propose a novel, domain-independent approach, called score-based resampling (SBR), to locate the under-represented samples of the original training dataset.
In our method, once trained, we use the same CNN model to infer on its own training samples, obtain prediction scores, and based on the distance between predicted and ground-truth, we identify samples that are far away from their ground-truth.
The obtained results confirmed the validity of our proposed method regrading identifying under-represented samples among original dataset to decrease categorical bias of classifying certain groups.
arXiv Detail & Related papers (2021-06-28T16:07:49Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
We introduce the Wellington Posterior, which is the distribution of outcomes that would have been obtained in response to data that could have been generated by the same scene.
We explore the use of data augmentation, dropout, ensembling, single-view reconstruction, and model linearization to compute a Wellington Posterior.
Additional methods include the use of conditional generative models such as generative adversarial networks, neural radiance fields, and conditional prior networks.
arXiv Detail & Related papers (2021-06-25T20:10:00Z) - Anomaly Detection in Image Datasets Using Convolutional Neural Networks,
Center Loss, and Mahalanobis Distance [0.0]
User activities generate a significant number of poor-quality or irrelevant images and data vectors.
For neural networks, the anomalous is usually defined as out-of-distribution samples.
This work proposes methods for supervised and semi-supervised detection of out-of-distribution samples in image datasets.
arXiv Detail & Related papers (2021-04-13T13:44:03Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Incremental Unsupervised Domain-Adversarial Training of Neural Networks [17.91571291302582]
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples.
Here we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively.
Our results report a clear improvement with respect to the non-incremental case in several datasets, also outperforming other state-of-the-art domain adaptation algorithms.
arXiv Detail & Related papers (2020-01-13T09:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.