Multi-modal Multi-kernel Graph Learning for Autism Prediction and
Biomarker Discovery
- URL: http://arxiv.org/abs/2303.03388v2
- Date: Sun, 9 Apr 2023 05:29:50 GMT
- Title: Multi-modal Multi-kernel Graph Learning for Autism Prediction and
Biomarker Discovery
- Authors: Junbin Mao, Jin Liu, Hanhe Lin, Hulin Kuang, Shirui Pan and Yi Pan
- Abstract summary: We propose a novel method to offset the negative impact between modalities in the process of multi-modal integration and extract heterogeneous information from graphs.
Our method is evaluated on the benchmark Autism Brain Imaging Data Exchange (ABIDE) dataset and outperforms the state-of-the-art methods.
In addition, discriminative brain regions associated with autism are identified by our model, providing guidance for the study of autism pathology.
- Score: 29.790200009136825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to its complexity, graph learning-based multi-modal integration and
classification is one of the most challenging obstacles for disease prediction.
To effectively offset the negative impact between modalities in the process of
multi-modal integration and extract heterogeneous information from graphs, we
propose a novel method called MMKGL (Multi-modal Multi-Kernel Graph Learning).
For the problem of negative impact between modalities, we propose a multi-modal
graph embedding module to construct a multi-modal graph. Different from
conventional methods that manually construct static graphs for all modalities,
each modality generates a separate graph by adaptive learning, where a function
graph and a supervision graph are introduced for optimization during the
multi-graph fusion embedding process. We then propose a multi-kernel graph
learning module to extract heterogeneous information from the multi-modal
graph. The information in the multi-modal graph at different levels is
aggregated by convolutional kernels with different receptive field sizes,
followed by generating a cross-kernel discovery tensor for disease prediction.
Our method is evaluated on the benchmark Autism Brain Imaging Data Exchange
(ABIDE) dataset and outperforms the state-of-the-art methods. In addition,
discriminative brain regions associated with autism are identified by our
model, providing guidance for the study of autism pathology.
Related papers
- GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
We propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o)
arXiv Detail & Related papers (2024-07-08T01:06:13Z) - MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction [8.592259720470697]
We propose MM-GTUNets, an end-to-end graph transformer based multi-modal graph deep learning framework for brain disorders prediction.
We introduce Modality Reward Representation Learning (MRRL) which adaptively constructs population graphs using a reward system.
We also propose Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features.
arXiv Detail & Related papers (2024-06-20T16:14:43Z) - Graph Relation Distillation for Efficient Biomedical Instance
Segmentation [80.51124447333493]
We propose a graph relation distillation approach for efficient biomedical instance segmentation.
We introduce two graph distillation schemes deployed at both the intra-image level and the inter-image level.
Experimental results on a number of biomedical datasets validate the effectiveness of our approach.
arXiv Detail & Related papers (2024-01-12T04:41:23Z) - M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive
Learning [16.391439666603578]
We propose a new multi-scale meta-path integrated heterogeneous graph contrastive learning (M2HGCL) model.
Specifically, we expand the meta-paths and jointly aggregate the direct neighbor information, the initial meta-path neighbor information and the expanded meta-path neighbor information.
Through extensive experiments on three real-world datasets, we demonstrate that M2HGCL outperforms the current state-of-the-art baseline models.
arXiv Detail & Related papers (2023-09-03T06:39:56Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Multi-modal Graph Learning for Disease Prediction [35.156975779372836]
We propose an end-to-end Multi-modal Graph Learning framework (MMGL) for disease prediction with multi-modality.
Instead of defining the graph manually, the latent graph structure is captured through an effective way of adaptive graph learning.
An extensive group of experiments on two disease prediction tasks demonstrates that the proposed MMGL achieves more favorable performance.
arXiv Detail & Related papers (2022-03-11T12:33:20Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
We propose an end-to-end Multimodal Graph Learning framework (MMGL) for disease prediction.
Instead of defining the adjacency matrix manually as existing methods, the latent graph structure can be captured through a novel way of adaptive graph learning.
arXiv Detail & Related papers (2021-07-01T03:59:22Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.