Demonstration-guided Deep Reinforcement Learning for Coordinated Ramp
Metering and Perimeter Control in Large Scale Networks
- URL: http://arxiv.org/abs/2303.03395v1
- Date: Sat, 4 Mar 2023 11:49:49 GMT
- Title: Demonstration-guided Deep Reinforcement Learning for Coordinated Ramp
Metering and Perimeter Control in Large Scale Networks
- Authors: Zijian Hu and Wei Ma
- Abstract summary: This study considers two representative control approaches: ramp metering for freeways and perimeter control for homogeneous urban roads.
We propose a novel meso-macro dynamic network model and first time develop a demonstration-guided DRL method.
The research outcome reveals the great potential of combining traditional controllers with DRL for coordinated control in large-scale networks.
- Score: 12.296779112932741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective traffic control methods have great potential in alleviating network
congestion. Existing literature generally focuses on a single control approach,
while few studies have explored the effectiveness of integrated and coordinated
control approaches. This study considers two representative control approaches:
ramp metering for freeways and perimeter control for homogeneous urban roads,
and we aim to develop a deep reinforcement learning (DRL)-based coordinated
control framework for large-scale networks. The main challenges are 1) there is
a lack of efficient dynamic models for both freeways and urban roads; 2) the
standard DRL method becomes ineffective due to the complex and non-stationary
network dynamics. In view of this, we propose a novel meso-macro dynamic
network model and first time develop a demonstration-guided DRL method to
achieve large-scale coordinated ramp metering and perimeter control. The
dynamic network model hybridizes the link and generalized bathtub models to
depict the traffic dynamics of freeways and urban roads, respectively. For the
DRL method, we incorporate demonstration to guide the DRL method for better
convergence by introducing the concept of "teacher" and "student" models. The
teacher models are traditional controllers (e.g., ALINEA, Gating), which
provide control demonstrations. The student models are DRL methods, which learn
from the teacher and aim to surpass the teacher's performance. To validate the
proposed framework, we conduct two case studies in a small-scale network and a
real-world large-scale traffic network in Hong Kong. The research outcome
reveals the great potential of combining traditional controllers with DRL for
coordinated control in large-scale networks.
Related papers
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
arXiv Detail & Related papers (2024-10-15T06:28:21Z) - Generalizing Cooperative Eco-driving via Multi-residual Task Learning [6.864745785996583]
Multi-residual Task Learning (MRTL) is a generic learning framework based on multi-task learning.
MRTL decomposes control into nominal components that are effectively solved by conventional control methods and residual terms.
We employ MRTL for fleet-level emission reduction in mixed traffic using autonomous vehicles as a means of system control.
arXiv Detail & Related papers (2024-03-07T05:25:34Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
We study the robustness of deep reinforcement-learning (RL) approaches to control traffic signals.
We show that recent methods remain brittle in the face of missing data.
We propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble.
arXiv Detail & Related papers (2023-06-02T21:30:44Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
In real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors.
We propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents.
arXiv Detail & Related papers (2023-04-21T03:26:33Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.