Communication-Control Codesign for Large-Scale Wireless Networked Control Systems
- URL: http://arxiv.org/abs/2410.11316v1
- Date: Tue, 15 Oct 2024 06:28:21 GMT
- Title: Communication-Control Codesign for Large-Scale Wireless Networked Control Systems
- Authors: Gaoyang Pang, Wanchun Liu, Dusit Niyato, Branka Vucetic, Yonghui Li,
- Abstract summary: Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots.
We propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels.
We develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs.
- Score: 80.30532872347668
- License:
- Abstract: Wireless Networked Control Systems (WNCSs) are essential to Industry 4.0, enabling flexible control in applications, such as drone swarms and autonomous robots. The interdependence between communication and control requires integrated design, but traditional methods treat them separately, leading to inefficiencies. Current codesign approaches often rely on simplified models, focusing on single-loop or independent multi-loop systems. However, large-scale WNCSs face unique challenges, including coupled control loops, time-correlated wireless channels, trade-offs between sensing and control transmissions, and significant computational complexity. To address these challenges, we propose a practical WNCS model that captures correlated dynamics among multiple control loops with spatially distributed sensors and actuators sharing limited wireless resources over multi-state Markov block-fading channels. We formulate the codesign problem as a sequential decision-making task that jointly optimizes scheduling and control inputs across estimation, control, and communication domains. To solve this problem, we develop a Deep Reinforcement Learning (DRL) algorithm that efficiently handles the hybrid action space, captures communication-control correlations, and ensures robust training despite sparse cross-domain variables and floating control inputs. Extensive simulations show that the proposed DRL approach outperforms benchmarks and solves the large-scale WNCS codesign problem, providing a scalable solution for industrial automation.
Related papers
- Wireless Human-Machine Collaboration in Industry 5.0 [75.78721184383897]
Wireless Human-Machine Collaboration represents a critical advancement for Industry 5.0.
Stability analysis certifies how the closed-loop system will behave under model randomness.
This paper establishes a fundamental WHMC model incorporating dual wireless loops for machine and human control.
arXiv Detail & Related papers (2024-10-18T03:44:10Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
We study a prototypal system in which an observer must communicate its sensory data to a robot controlling a task.
We consider an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
We tested the proposed approach on the well-known CartPole reference control problem, obtaining a significant performance increase.
arXiv Detail & Related papers (2024-01-29T15:35:05Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
Coordination of robotic swarms and the remote wireless control of industrial systems are among the major use cases for 5G and beyond systems.
In this work, we consider a prototypal system in which an observer must communicate its sensory data to an actor controlling a task.
We propose an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
arXiv Detail & Related papers (2023-01-14T11:43:56Z) - Closed-form control with spike coding networks [1.1470070927586016]
Efficient and robust control using spiking neural networks (SNNs) is still an open problem.
We extend neuroscience theory of Spike Coding Networks (SCNs) by incorporating closed-form optimal estimation and control.
We demonstrate robust spiking control of simulated spring-mass-damper and cart-pole systems.
arXiv Detail & Related papers (2022-12-25T10:32:20Z) - Deep Learning for Wireless Networked Systems: a joint
Estimation-Control-Scheduling Approach [47.29474858956844]
Wireless networked control system (WNCS) connecting sensors, controllers, and actuators via wireless communications is a key enabling technology for highly scalable and low-cost deployment of control systems in the Industry 4.0 era.
Despite the tight interaction of control and communications in WNCSs, most existing works adopt separative design approaches.
We propose a novel deep reinforcement learning (DRL)-based algorithm for controller and optimization utilizing both model-free and model-based data.
arXiv Detail & Related papers (2022-10-03T01:29:40Z) - Communication Topology Co-Design in Graph Recurrent Neural Network Based
Distributed Control [4.492630871726495]
We introduce a compact but expressive graph recurrent neural network (GRNN) parameterization of distributed controllers.
Our proposed parameterization enjoys a local and distributed architecture, similar to previous Graph Neural Network (GNN)-based parameterizations.
We show that our method allows for performance/communication density tradeoff curves to be efficiently approximated.
arXiv Detail & Related papers (2021-04-28T16:30:02Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
arXiv Detail & Related papers (2020-12-29T18:59:14Z) - Graph Neural Networks for Decentralized Controllers [171.6642679604005]
Dynamical systems comprised of autonomous agents arise in many relevant problems such as robotics, smart grids, or smart cities.
Optimal centralized controllers are readily available but face limitations in terms of scalability and practical implementation.
We propose a framework using graph neural networks (GNNs) to learn decentralized controllers from data.
arXiv Detail & Related papers (2020-03-23T13:51:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.