Wind Turbine Gearbox Fault Detection Based on Sparse Filtering and Graph
Neural Networks
- URL: http://arxiv.org/abs/2303.03496v1
- Date: Mon, 6 Mar 2023 21:08:07 GMT
- Title: Wind Turbine Gearbox Fault Detection Based on Sparse Filtering and Graph
Neural Networks
- Authors: Jinsong Wang, Kenneth A. Loparo
- Abstract summary: Wind turbine gearbox malfunctions are particularly prevalent and lead to the most prolonged downtime and highest cost.
This paper presents a data-driven gearbox fault detection algorithm base on high frequency vibration data using graph neural network (GNN) models and sparse filtering (SF)
- Score: 5.415995239349699
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The wind energy industry has been experiencing tremendous growth and
confronting the failures of wind turbine components. Wind turbine gearbox
malfunctions are particularly prevalent and lead to the most prolonged downtime
and highest cost. This paper presents a data-driven gearbox fault detection
algorithm base on high frequency vibration data using graph neural network
(GNN) models and sparse filtering (SF). The approach can take advantage of the
comprehensive data sources and the complicated sensing networks. The GNN
models, including basic graph neural networks, gated graph neural networks, and
gated graph sequential neural networks, are used to detect gearbox condition
from knowledge-based graphs formed using wind turbine information. Sparse
filtering is used as an unsupervised feature learning method to accelerate the
training of the GNN models. The effectiveness of the proposed method was
verified on practical experimental data.
Related papers
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Unleash Graph Neural Networks from Heavy Tuning [33.948899558876604]
Graph Neural Networks (GNNs) are deep-learning architectures designed for graph-type data.
We propose a graph conditional latent diffusion framework (GNN-Diff) to generate high-performing GNNs directly by learning from checkpoints saved during a light-tuning coarse search.
arXiv Detail & Related papers (2024-05-21T06:23:47Z) - End-to-end Wind Turbine Wake Modelling with Deep Graph Representation
Learning [7.850747042819504]
This work proposes a surrogate model for the representation of wind turbine wakes based on a graph representation learning method termed a graph neural network.
The proposed end-to-end deep learning model operates directly on unstructured meshes and has been validated against high-fidelity data.
A case study based upon a real world wind farm further demonstrates the capability of the proposed approach to predict farm scale power generation.
arXiv Detail & Related papers (2022-11-24T15:00:06Z) - Representation Learning of Knowledge Graph for Wireless Communication
Networks [21.123289598816847]
This article aims to understand the endogenous relationship of wireless data by constructing a knowledge graph according to the wireless communication protocols.
A novel model based on graph convolutional neural networks is designed to learn the representation of the graph, which is used to classify graph nodes and simulate the relation prediction.
arXiv Detail & Related papers (2022-08-22T07:36:34Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA
data [0.0]
This paper explores the possibility of using convolutional neural networks (CNNs), generative adversarial networks (GANs) and domain adaption learning to establish intelligent diagnosis frameworks.
We consider a two-stage training with parallel GANs, which are aimed at capturing intrinsic features for normal and icing samples.
Model validation on three wind turbine SCADA data shows that two-stage training can effectively improve the model performance.
arXiv Detail & Related papers (2021-01-20T00:46:52Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.