Multi-resolution Interpretation and Diagnostics Tool for Natural
Language Classifiers
- URL: http://arxiv.org/abs/2303.03542v1
- Date: Mon, 6 Mar 2023 22:59:02 GMT
- Title: Multi-resolution Interpretation and Diagnostics Tool for Natural
Language Classifiers
- Authors: Peyman Jalali, Nengfeng Zhou, Yufei Yu
- Abstract summary: This paper aims to create more flexible model explainability summaries by segments of observation or clusters of words that are semantically related to each other.
In addition, we introduce a root cause analysis method for NLP models, by analyzing representative False Positive and False Negative examples from different segments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing explainability methods for Natural Language Processing (NLP)
models is a challenging task, for two main reasons. First, the high
dimensionality of the data (large number of tokens) results in low coverage and
in turn small contributions for the top tokens, compared to the overall model
performance. Second, owing to their textual nature, the input variables, after
appropriate transformations, are effectively binary (presence or absence of a
token in an observation), making the input-output relationship difficult to
understand. Common NLP interpretation techniques do not have flexibility in
resolution, because they usually operate at word-level and provide fully local
(message level) or fully global (over all messages) summaries. The goal of this
paper is to create more flexible model explainability summaries by segments of
observation or clusters of words that are semantically related to each other.
In addition, we introduce a root cause analysis method for NLP models, by
analyzing representative False Positive and False Negative examples from
different segments. At the end, we illustrate, using a Yelp review data set
with three segments (Restaurant, Hotel, and Beauty), that exploiting
group/cluster structures in words and/or messages can aid in the interpretation
of decisions made by NLP models and can be utilized to assess the model's
sensitivity or bias towards gender, syntax, and word meanings.
Related papers
- Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
We examine the successes and limitations of the GPT-3, ChatGPT, and GPT-4 models in analysis of sentence meaning structure.
We find that models can reliably reproduce the basic format of AMR, and can often capture core event, argument, and modifier structure.
Overall, our findings indicate that these models out-of-the-box can capture aspects of semantic structure, but there remain key limitations in their ability to support fully accurate semantic analyses or parses.
arXiv Detail & Related papers (2023-10-26T21:47:59Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
We aim to leverage the instruction-following and textual understanding capabilities of recent Large Language Models to facilitate causal explainability.
We propose a three-step pipeline via which, we use an off-the-shelf LLM to identify the latent or unobserved features in the input text.
We experiment with our pipeline on multiple NLP text classification datasets, and present interesting and promising findings.
arXiv Detail & Related papers (2023-09-23T11:22:28Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics.
Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding.
We show that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena.
arXiv Detail & Related papers (2022-02-21T18:32:24Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions.
Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers.
arXiv Detail & Related papers (2022-02-20T11:15:03Z) - Exploring Transitivity in Neural NLI Models through Veridicality [39.845425535943534]
We focus on the transitivity of inference relations, a fundamental property for systematically drawing inferences.
A model capturing transitivity can compose basic inference patterns and draw new inferences.
We find that current NLI models do not perform consistently well on transitivity inference tasks.
arXiv Detail & Related papers (2021-01-26T11:18:35Z) - Self-Explaining Structures Improve NLP Models [25.292847674586614]
We propose a simple yet general and effective self-explaining framework for deep learning models in NLP.
We show that interpretability does not come at the cost of performance: a neural model of self-explaining features obtains better performances than its counterpart without the self-explaining nature.
arXiv Detail & Related papers (2020-12-03T09:32:05Z) - Coreferential Reasoning Learning for Language Representation [88.14248323659267]
We present CorefBERT, a novel language representation model that can capture the coreferential relations in context.
The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks.
arXiv Detail & Related papers (2020-04-15T03:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.