Exploring Transitivity in Neural NLI Models through Veridicality
- URL: http://arxiv.org/abs/2101.10713v1
- Date: Tue, 26 Jan 2021 11:18:35 GMT
- Title: Exploring Transitivity in Neural NLI Models through Veridicality
- Authors: Hitomi Yanaka, Koji Mineshima, Kentaro Inui
- Abstract summary: We focus on the transitivity of inference relations, a fundamental property for systematically drawing inferences.
A model capturing transitivity can compose basic inference patterns and draw new inferences.
We find that current NLI models do not perform consistently well on transitivity inference tasks.
- Score: 39.845425535943534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent success of deep neural networks in natural language
processing, the extent to which they can demonstrate human-like generalization
capacities for natural language understanding remains unclear. We explore this
issue in the domain of natural language inference (NLI), focusing on the
transitivity of inference relations, a fundamental property for systematically
drawing inferences. A model capturing transitivity can compose basic inference
patterns and draw new inferences. We introduce an analysis method using
synthetic and naturalistic NLI datasets involving clause-embedding verbs to
evaluate whether models can perform transitivity inferences composed of
veridical inferences and arbitrary inference types. We find that current NLI
models do not perform consistently well on transitivity inference tasks,
suggesting that they lack the generalization capacity for drawing composite
inferences from provided training examples. The data and code for our analysis
are publicly available at https://github.com/verypluming/transitivity.
Related papers
- Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Uncovering More Shallow Heuristics: Probing the Natural Language
Inference Capacities of Transformer-Based Pre-Trained Language Models Using
Syllogistic Patterns [9.031827448667086]
We explore the shallows used by transformer-based pre-trained language models (PLMs) that are fine-tuned for natural language inference (NLI)
We find evidence that the models rely heavily on certain shallows, picking up on symmetries and asymmetries between premise and hypothesis.
arXiv Detail & Related papers (2022-01-19T14:15:41Z) - Automatically Identifying Semantic Bias in Crowdsourced Natural Language
Inference Datasets [78.6856732729301]
We introduce a model-driven, unsupervised technique to find "bias clusters" in a learned embedding space of hypotheses in NLI datasets.
interventions and additional rounds of labeling can be performed to ameliorate the semantic bias of the hypothesis distribution of a dataset.
arXiv Detail & Related papers (2021-12-16T22:49:01Z) - Unnatural Language Inference [48.45003475966808]
We find that state-of-the-art NLI models, such as RoBERTa and BART, are invariant to, and sometimes even perform better on, examples with randomly reordered words.
Our findings call into question the idea that our natural language understanding models, and the tasks used for measuring their progress, genuinely require a human-like understanding of syntax.
arXiv Detail & Related papers (2020-12-30T20:40:48Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Logical Natural Language Generation from Open-Domain Tables [107.04385677577862]
We propose a new task where a model is tasked with generating natural language statements that can be emphlogically entailed by the facts.
To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset citechen 2019tabfact featured with a wide range of logical/symbolic inferences.
The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order.
arXiv Detail & Related papers (2020-04-22T06:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.