Expressivity of Shallow and Deep Neural Networks for Polynomial
Approximation
- URL: http://arxiv.org/abs/2303.03544v2
- Date: Tue, 16 May 2023 08:52:01 GMT
- Title: Expressivity of Shallow and Deep Neural Networks for Polynomial
Approximation
- Authors: Itai Shapira
- Abstract summary: We establish an exponential lower bound on the complexity of any shallow network approximating the product function over a general compact domain.
We also demonstrate this lower bound doesn't apply to normalized Lipschitz monomials over the unit cube.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study explores the number of neurons required for a Rectified Linear
Unit (ReLU) neural network to approximate multivariate monomials. We establish
an exponential lower bound on the complexity of any shallow network
approximating the product function over a general compact domain. We also
demonstrate this lower bound doesn't apply to normalized Lipschitz monomials
over the unit cube. These findings suggest that shallow ReLU networks
experience the curse of dimensionality when expressing functions with a
Lipschitz parameter scaling with the dimension of the input, and that the
expressive power of neural networks is more dependent on their depth rather
than overall complexity.
Related papers
- Spectral complexity of deep neural networks [2.099922236065961]
We use the angular power spectrum of the limiting field to characterize the complexity of the network architecture.
On this basis, we classify neural networks as low-disorder, sparse, or high-disorder.
We show how this classification highlights a number of distinct features for standard activation functions, and in particular, sparsity properties of ReLU networks.
arXiv Detail & Related papers (2024-05-15T17:55:05Z) - Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
We investigate emphscaled ResNet in the limit of infinitely deep and wide neural networks.
Our results offer new insights into the generalization ability of deep ResNet beyond the lazy training regime.
arXiv Detail & Related papers (2024-03-14T21:48:00Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
We first show that a three-layer neural network can be designed to approximate an indicator function over a compact set.
This is then extended to a simplicial complex, deriving width upper bounds based on its topological structure.
We prove the universal approximation property of three-layer ReLU networks using our topological approach.
arXiv Detail & Related papers (2023-05-25T14:17:15Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
We consider two classes of target functions: generalized bandlimited functions and Sobolev-Type balls.
Our results demonstrate that multiplicative neural networks can approximate these functions with significantly fewer layers and neurons.
These findings suggest that multiplicative gates can outperform standard feed-forward layers and have potential for improving neural network design.
arXiv Detail & Related papers (2023-01-11T17:57:33Z) - Simultaneous approximation of a smooth function and its derivatives by
deep neural networks with piecewise-polynomial activations [2.15145758970292]
We derive the required depth, width, and sparsity of a deep neural network to approximate any H"older smooth function up to a given approximation error in H"older norms.
The latter feature is essential to control generalization errors in many statistical and machine learning applications.
arXiv Detail & Related papers (2022-06-20T01:18:29Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality [0.0]
We prove upper bounds on quantities for shallow and deep neural networks.
We further prove that these bounds nearly match the minimal number of parameters any continuous function approximator needs to approximate Korobov functions.
arXiv Detail & Related papers (2020-12-10T04:44:07Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - Approximation in shift-invariant spaces with deep ReLU neural networks [7.7084107194202875]
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces.
Approximation error bounds are estimated with respect to the width and depth of neural networks.
arXiv Detail & Related papers (2020-05-25T07:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.