Large Language Model-based Human-Agent Collaboration for Complex Task
Solving
- URL: http://arxiv.org/abs/2402.12914v1
- Date: Tue, 20 Feb 2024 11:03:36 GMT
- Title: Large Language Model-based Human-Agent Collaboration for Complex Task
Solving
- Authors: Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan
Liu, Ji-Rong Wen
- Abstract summary: We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
- Score: 94.3914058341565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent developments within the research community, the integration of
Large Language Models (LLMs) in creating fully autonomous agents has garnered
significant interest. Despite this, LLM-based agents frequently demonstrate
notable shortcomings in adjusting to dynamic environments and fully grasping
human needs. In this work, we introduce the problem of LLM-based human-agent
collaboration for complex task-solving, exploring their synergistic potential.
In addition, we propose a Reinforcement Learning-based Human-Agent
Collaboration method, ReHAC. This approach includes a policy model designed to
determine the most opportune stages for human intervention within the
task-solving process. We construct a human-agent collaboration dataset to train
this policy model in an offline reinforcement learning environment. Our
validation tests confirm the model's effectiveness. The results demonstrate
that the synergistic efforts of humans and LLM-based agents significantly
improve performance in complex tasks, primarily through well-planned, limited
human intervention. Datasets and code are available at:
https://github.com/XueyangFeng/ReHAC.
Related papers
- Learning to Cooperate with Humans using Generative Agents [40.605931138995714]
Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL)
We show emphlearning a generative model of human partners can effectively address this issue.
By sampling from the latent space, we can use the generative model to produce different partners to train Cooperator agents.
arXiv Detail & Related papers (2024-11-21T08:36:17Z) - PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks [57.89516354418451]
We present a benchmark for Planning And Reasoning Tasks in humaN-Robot collaboration (PARTNR)
We employ a semi-automated task generation pipeline using Large Language Models (LLMs)
We analyze state-of-the-art LLMs on PARTNR tasks, across the axes of planning, perception and skill execution.
arXiv Detail & Related papers (2024-10-31T17:53:12Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
Large Language Models (LLMs) have increasingly demonstrated the ability to facilitate the development of multi-agent systems.
This paper aims to integrate agents & world interaction into a single simulation where multiple agents can work together to solve a problem.
We implement two simulations: a physical studio apartment with two roommates, and another where agents collaborate to complete a programming task.
arXiv Detail & Related papers (2024-09-14T21:53:35Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
Computational experiments have emerged as a valuable method for studying complex systems.
accurately representing real social systems in Agent-based Modeling (ABM) is challenging due to the diverse and intricate characteristics of humans.
The integration of Large Language Models (LLMs) has been proposed, enabling agents to possess anthropomorphic abilities.
arXiv Detail & Related papers (2024-02-01T01:17:46Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
We introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities.
We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills.
Our work provides valuable insights into the role and evolution of Large Language Models in task-oriented social simulations.
arXiv Detail & Related papers (2023-10-10T10:17:58Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.