論文の概要: FIT: Frequency-based Image Translation for Domain Adaptive Object
Detection
- arxiv url: http://arxiv.org/abs/2303.03698v1
- Date: Tue, 7 Mar 2023 07:30:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 16:07:12.754750
- Title: FIT: Frequency-based Image Translation for Domain Adaptive Object
Detection
- Title(参考訳): FIT:領域適応オブジェクト検出のための周波数ベース画像変換
- Authors: Siqi Zhang, Lu Zhang, Zhiyong Liu and Hangtao Feng
- Abstract要約: ドメイン適応オブジェクト検出(DAOD)のための新しい周波数ベース画像変換(FIT)フレームワークを提案する。
まず、ドメイン不変周波数成分を保持し、ドメイン固有周波数成分を交換することで、画像変換を行い、入力レベルでのドメインシフトを低減する。
第二に、階層的対角的特徴学習を用いて、特徴レベルでのドメインギャップをさらに緩和する。
- 参考スコア(独自算出の注目度): 8.635264598464355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptive object detection (DAOD) aims to adapt the detector from a
labelled source domain to an unlabelled target domain. In recent years, DAOD
has attracted massive attention since it can alleviate performance degradation
due to the large shift of data distributions in the wild. To align
distributions between domains, adversarial learning is widely used in existing
DAOD methods. However, the decision boundary for the adversarial domain
discriminator may be inaccurate, causing the model biased towards the source
domain. To alleviate this bias, we propose a novel Frequency-based Image
Translation (FIT) framework for DAOD. First, by keeping domain-invariant
frequency components and swapping domain-specific ones, we conduct image
translation to reduce domain shift at the input level. Second, hierarchical
adversarial feature learning is utilized to further mitigate the domain gap at
the feature level. Finally, we design a joint loss to train the entire network
in an end-to-end manner without extra training to obtain translated images.
Extensive experiments on three challenging DAOD benchmarks demonstrate the
effectiveness of our method.
- Abstract(参考訳): ドメイン適応オブジェクト検出(DAOD)は、ラベル付きソースドメインから未ラベルのターゲットドメインへの検出器の適応を目的としている。
近年,DAODはデータ分布の急激な変化による性能低下を緩和できるため,注目されている。
ドメイン間の分布を整合させるため、既存のDAOD法では逆学習が広く使われている。
しかし、逆ドメイン判別器の判断境界は不正確であり、モデルがソースドメインに偏りを生じさせる可能性がある。
このバイアスを軽減するために、DAODのための新しい周波数ベースの画像翻訳(FIT)フレームワークを提案する。
まず、ドメイン不変周波数成分を保持し、ドメイン固有周波数成分を交換することで、画像変換を行い、入力レベルでのドメインシフトを低減する。
第二に、階層的対角的特徴学習を用いて、特徴レベルでのドメインギャップをさらに緩和する。
最後に、翻訳画像を得るための余分な訓練をすることなく、エンドツーエンドでネットワーク全体をトレーニングするための共同損失を設計する。
3つのDAODベンチマークの大規模な実験により,本手法の有効性が示された。
関連論文リスト
- Source-free Domain Adaptive Object Detection in Remote Sensing Images [11.19538606490404]
本研究では,RS画像のソースフリーオブジェクト検出(SFOD)設定を提案する。
これは、ソース事前学習モデルのみを使用してターゲットドメイン適応を実行することを目的としている。
本手法では,ソース領域RS画像へのアクセスは不要である。
論文 参考訳(メタデータ) (2024-01-31T15:32:44Z) - Unsupervised Domain Adaptation via Domain-Adaptive Diffusion [31.802163238282343]
非教師付きドメイン適応(UDA)は、ソースドメインとターゲットドメインの間に大きな分散不一致があるため、非常に難しい。
大規模なギャップをまたいでデータ分散を段階的に変換する能力を持つ拡散モデルに着想を得て,その課題に対処する拡散手法について検討する。
提案手法は, 広く使用されている3つのUDAデータセットに対して, 現在の最先端技術よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2023-08-26T14:28:18Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
循環不整合特徴変換ネットワーク(CDFTN)と呼ばれる新しい領域適応手法を提案する。
CDFTNは、(1)ソースドメイン不変の生長特徴と2)ドメイン固有のコンテンツ特徴とを持つ擬似ラベル付きサンプルを生成する。
ソースドメインラベルの監督の下で、合成擬似ラベル付き画像に基づいてロバスト分類器を訓練する。
論文 参考訳(メタデータ) (2022-12-07T14:12:34Z) - Reducing Domain Gap in Frequency and Spatial domain for Cross-modality
Domain Adaptation on Medical Image Segmentation [5.371816551086118]
教師なしドメイン適応(UDA)は、ソースドメインで訓練されたモデルを学び、ラベルなしのターゲットドメインでうまく機能することを目的としています。
本稿では, 周波数及び空間領域移動Uner Multi-Teacher蒸留フレームワークに基づく, 単純かつ効果的なUDA法を提案する。
提案手法は最先端手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-28T11:35:39Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
周波数スペクトル拡張整合(FSAC)フレームワークを4種類の低周波フィルタで構成する。
最初の段階では、オリジナルおよび拡張されたソースデータを全て利用して、オブジェクト検出器を訓練する。
第2段階では、予測一貫性のための自己学習を行うために、擬似ラベル付き拡張現実とターゲットデータを採用する。
論文 参考訳(メタデータ) (2021-12-16T04:07:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised Domain Adapt (UDA)メソッドは、ドメインの競合トレーニングを利用して、機能を調整してドメインのギャップを減らす。
本研究では,Re-enforceable Adversarial Domain Adaptation (RADA) と呼ばれる効率的な最適化戦略を提案する。
RADAは、動的ドメインラベルを使用して、トレーニング中にドメイン識別器を再活性化することを目指しています。
論文 参考訳(メタデータ) (2021-03-22T08:32:55Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。