External Camera-based Mobile Robot Pose Estimation for Collaborative
Perception with Smart Edge Sensors
- URL: http://arxiv.org/abs/2303.03797v1
- Date: Tue, 7 Mar 2023 11:03:33 GMT
- Title: External Camera-based Mobile Robot Pose Estimation for Collaborative
Perception with Smart Edge Sensors
- Authors: Simon Bultmann, Raphael Memmesheimer, and Sven Behnke
- Abstract summary: We present an approach for estimating a mobile robot's pose w.r.t. the allocentric coordinates of a network of static cameras using multi-view RGB images.
The images are processed online, locally on smart edge sensors by deep neural networks to detect the robot.
With the robot's pose precisely estimated, its observations can be fused into the allocentric scene model.
- Score: 22.5939915003931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for estimating a mobile robot's pose w.r.t. the
allocentric coordinates of a network of static cameras using multi-view RGB
images. The images are processed online, locally on smart edge sensors by deep
neural networks to detect the robot and estimate 2D keypoints defined at
distinctive positions of the 3D robot model. Robot keypoint detections are
synchronized and fused on a central backend, where the robot's pose is
estimated via multi-view minimization of reprojection errors. Through the pose
estimation from external cameras, the robot's localization can be initialized
in an allocentric map from a completely unknown state (kidnapped robot problem)
and robustly tracked over time. We conduct a series of experiments evaluating
the accuracy and robustness of the camera-based pose estimation compared to the
robot's internal navigation stack, showing that our camera-based method
achieves pose errors below 3 cm and 1{\deg} and does not drift over time, as
the robot is localized allocentrically. With the robot's pose precisely
estimated, its observations can be fused into the allocentric scene model. We
show a real-world application, where observations from mobile robot and static
smart edge sensors are fused to collaboratively build a 3D semantic map of a
$\sim$240 m$^2$ indoor environment.
Related papers
- CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
Markerless pose estimation methods have eliminated the need for time-consuming physical setups for camera-to-robot calibration.
We propose a novel framework capable of estimating the robot pose with partially visible robot manipulators.
arXiv Detail & Related papers (2024-09-16T16:22:43Z) - Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
We introduce HARPER, a novel dataset for 3D body pose estimation and forecast in dyadic interactions between users and Spot.
The key-novelty is the focus on the robot's perspective, i.e., on the data captured by the robot's sensors.
The scenario underlying HARPER includes 15 actions, of which 10 involve physical contact between the robot and users.
arXiv Detail & Related papers (2024-03-21T14:53:50Z) - Real-time Holistic Robot Pose Estimation with Unknown States [30.41806081818826]
Estimating robot pose from RGB images is a crucial problem in computer vision and robotics.
Previous methods presume full knowledge of robot internal states, e.g. ground-truth robot joint angles.
This work introduces an efficient framework for real-time robot pose estimation from RGB images without requiring known robot states.
arXiv Detail & Related papers (2024-02-08T13:12:50Z) - Markerless Camera-to-Robot Pose Estimation via Self-supervised
Sim-to-Real Transfer [26.21320177775571]
We propose an end-to-end pose estimation framework that is capable of online camera-to-robot calibration and a self-supervised training method.
Our framework combines deep learning and geometric vision for solving the robot pose, and the pipeline is fully differentiable.
arXiv Detail & Related papers (2023-02-28T05:55:42Z) - Image-based Pose Estimation and Shape Reconstruction for Robot
Manipulators and Soft, Continuum Robots via Differentiable Rendering [20.62295718847247]
State estimation from measured data is crucial for robotic applications as autonomous systems rely on sensors to capture the motion and localize in the 3D world.
In this work, we achieve image-based robot pose estimation and shape reconstruction from camera images.
We demonstrate that our method of using geometrical shape primitives can achieve high accuracy in shape reconstruction for a soft continuum robot and pose estimation for a robot manipulator.
arXiv Detail & Related papers (2023-02-27T18:51:29Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
Knowing the exact 3D location of workers and robots in a collaborative environment enables several real applications.
We propose a non-invasive framework based on depth devices and deep neural networks to estimate the 3D pose of robots from an external camera.
arXiv Detail & Related papers (2022-07-06T08:52:12Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Single-view robot pose and joint angle estimation via render & compare [40.05546237998603]
We introduce RoboPose, a method to estimate the joint angles and the 6D camera-to-robot pose of a known articulated robot from a single RGB image.
This is an important problem to grant mobile and itinerant autonomous systems the ability to interact with other robots.
arXiv Detail & Related papers (2021-04-19T14:48:29Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRIC is an approach that works with minimal prior knowledge of the robot's morphology.
We demonstrate our method on visually-guided 3D point reaching, trajectory following, and robot-to-robot imitation.
arXiv Detail & Related papers (2019-12-31T15:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.