論文の概要: GaussianMLR: Learning Implicit Class Significance via Calibrated
Multi-Label Ranking
- arxiv url: http://arxiv.org/abs/2303.03907v1
- Date: Tue, 7 Mar 2023 14:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 15:12:44.454833
- Title: GaussianMLR: Learning Implicit Class Significance via Calibrated
Multi-Label Ranking
- Title(参考訳): GaussianMLR: Calibrated Multi-Label Ranking による暗黙のクラス意義の学習
- Authors: V. Bugra Yesilkaynak, Emine Dari, Alican Mertan, Gozde Unal
- Abstract要約: 本稿では,ガウスMLRという新しい多ラベルランキング手法を提案する。
これは、正のラベルのランクを決定する暗黙のクラス重要性の値を学ぶことを目的としている。
提案手法は, 組み込まれた正のランク順の表現を正確に学習できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Existing multi-label frameworks only exploit the information deduced from the
bipartition of the labels into a positive and negative set. Therefore, they do
not benefit from the ranking order between positive labels, which is the
concept we introduce in this paper. We propose a novel multi-label ranking
method: GaussianMLR, which aims to learn implicit class significance values
that determine the positive label ranks instead of treating them as of equal
importance, by following an approach that unifies ranking and classification
tasks associated with multi-label ranking. Due to the scarcity of public
datasets, we introduce eight synthetic datasets generated under varying
importance factors to provide an enriched and controllable experimental
environment for this study. On both real-world and synthetic datasets, we carry
out extensive comparisons with relevant baselines and evaluate the performance
on both of the two sub-tasks. We show that our method is able to accurately
learn a representation of the incorporated positive rank order, which is not
only consistent with the ground truth but also proportional to the underlying
information. We strengthen our claims empirically by conducting comprehensive
experimental studies. Code is available at
https://github.com/MrGranddy/GaussianMLR.
- Abstract(参考訳): 既存のマルチラベルフレームワークは、ラベルの分割から引き出された情報を正と負の集合にのみ活用する。
したがって,本論文で紹介する概念であるポジティブラベル間のランキング順序の利点は得られない。
そこで本研究では,複数ラベルのランク付けに係わるランク付けと分類を統一した手法を用いて,正のラベルランクを決定する暗黙のクラス重要度を等しく扱うのではなく学習することを目的とした,新しいマルチラベルランキング手法gaussianmlrを提案する。
公開データセットの不足により,様々な重要要因の下で生成された8つの合成データセットを導入し,より豊かで制御可能な実験環境を提供する。
実世界のデータセットと合成データセットの両方において、関連するベースラインとの比較を行い、2つのサブタスクの両方のパフォーマンスを評価する。
本手法は, 基礎となる情報に適合するだけでなく, 基礎となる情報に比例して, 組み込まれている正のランク順の表現を正確に学習できることを示す。
総合的な実験研究を行うことで, 実証的な主張を強める。
コードはhttps://github.com/MrGranddy/GaussianMLRで入手できる。
関連論文リスト
- Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification [11.19022605804112]
本稿では,新手法RR2QCを多ラベル質問分類に適用する。
ラベルセマンティクスとメタラベルの改良を使用して、パーソナライズされた学習とリソースレコメンデーションを強化する。
実験の結果,RR2QCはPrecision@kとF1スコアの既存の分類方法よりも優れていた。
論文 参考訳(メタデータ) (2024-11-04T06:27:14Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
そこで本研究では,基礎的真理推定手法に適合する新しい局所化アルゴリズムを提案する。
また,本アルゴリズムは,TexBiGデータセット上でのトレーニングにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-18T13:08:44Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
本稿では,二部類ランキングにおける公平性を実現するためのモデルに依存しない後処理フレームワークxOrderを提案する。
xOrderは、教師なしおよび教師なしの公正度メトリックを含む、さまざまな分類モデルとランキングフェアネスメトリクスと互換性がある。
提案アルゴリズムを,4つのベンチマークデータセットと2つの実世界の患者電子健康記録リポジトリ上で評価した。
論文 参考訳(メタデータ) (2023-07-27T07:42:44Z) - RLSEP: Learning Label Ranks for Multi-label Classification [0.0]
マルチラベルランキングは、複数の可能なクラスの予測ラベルのランキングにインスタンスをマップする。
不正なランク付けペアに対するペナルティを組み込んだモデル最適化のための,新たな専用損失関数を提案する。
提案手法は,合成および実世界のランク付けされたデータセットについて,最も優れた評価結果を得る。
論文 参考訳(メタデータ) (2022-12-08T00:59:09Z) - A Unified Positive-Unlabeled Learning Framework for Document-Level
Relation Extraction with Different Levels of Labeling [5.367772036988716]
文書レベルの関係抽出(RE)は、複数の文にわたるエンティティ間の関係を特定することを目的としている。
我々は、シフトと二乗ランキング損失という、肯定的でない統一的な学習フレームワークを提案する。
提案手法は, 既往のベースラインに対して, 不完全ラベル付きで約14F1点の改善を実現する。
論文 参考訳(メタデータ) (2022-10-17T02:54:49Z) - Binary Classification with Positive Labeling Sources [71.37692084951355]
WEAPOは、負のラベル付け源を使わずにトレーニングラベルを作成するための、シンプルで競争力のあるWS手法である。
We show WEAPO achieve the highest averaged performance on 10 benchmark datasets。
論文 参考訳(メタデータ) (2022-08-02T19:32:08Z) - Multi-label Classification with High-rank and High-order Label
Correlations [62.39748565407201]
従来の手法では, ラベル行列を低ランク行列係数化した潜在ラベル空間に変換することにより, 高階ラベル相関を捕えることができた。
本稿では,高次ラベル相関を明示的に記述する簡易かつ効果的な手法を提案し,同時にラベル行列の高次値を維持する。
12個のベンチマークデータセットの比較研究により,マルチラベル分類における提案アルゴリズムの有効性が検証された。
論文 参考訳(メタデータ) (2022-07-09T05:15:31Z) - A Theory-Driven Self-Labeling Refinement Method for Contrastive
Representation Learning [111.05365744744437]
教師なしのコントラスト学習は、正のイメージの作物と、負のイメージの作物とをラベル付けする。
本研究は, コントラスト学習において, 不正確なラベル割り当てがセマンティック・インスタンス識別の一般化を著しく損なうことを最初に証明する。
この理論に触発されて、コントラスト学習のための新しい自己ラベル改善手法を提案する。
論文 参考訳(メタデータ) (2021-06-28T14:24:52Z) - Pointwise Binary Classification with Pairwise Confidence Comparisons [97.79518780631457]
ペアワイズ比較(Pcomp)分類を提案し、ラベルのないデータのペアしか持たない。
我々はPcomp分類をノイズラベル学習に結びつけて、進歩的UREを開発し、一貫性の正則化を課すことにより改善する。
論文 参考訳(メタデータ) (2020-10-05T09:23:58Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。