Error convergence and engineering-guided hyperparameter search of PINNs:
towards optimized I-FENN performance
- URL: http://arxiv.org/abs/2303.03918v2
- Date: Mon, 5 Jun 2023 07:40:27 GMT
- Title: Error convergence and engineering-guided hyperparameter search of PINNs:
towards optimized I-FENN performance
- Authors: Panos Pantidis, Habiba Eldababy, Christopher Miguel Tagle, Mostafa E.
Mobasher
- Abstract summary: We enhance the rigour and performance of I-FENN by focusing on two crucial aspects of its PINN component.
We introduce a systematic numerical approach based on a novel set of holistic performance metrics.
The proposed analysis can be directly extended to other applications in science and engineering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In our recently proposed Integrated Finite Element Neural Network (I-FENN)
framework (Pantidis and Mobasher, 2023) we showcased how PINNs can be deployed
on a finite element-level basis to swiftly approximate a state variable of
interest, and we applied it in the context of non-local gradient-enhanced
damage mechanics. In this paper, we enhance the rigour and performance of
I-FENN by focusing on two crucial aspects of its PINN component: a) the error
convergence analysis and b) the hyperparameter-performance relationship. Guided
by the available theoretical formulations in the field, we introduce a
systematic numerical approach based on a novel set of holistic performance
metrics to answer both objectives. In the first objective, we explore in detail
the convergence of the PINN training error and the global error against the
network size and the training sample size. We demonstrate a consistent
converging behavior of the two error types for any investigated combination of
network complexity, dataset size and choice of hyperparameters, which
empirically proves the conformance of the PINN setup and implementation to the
available convergence theories. In the second objective, we establish an
a-priori knowledge of the hyperparameters which favor higher predictive
accuracy, lower computational effort, and the least chances of arriving at
trivial solutions. The analysis leads to several outcomes that contribute to
the better performance of I-FENN, and fills a long-standing gap in the PINN
literature with regards to the numerical convergence of the network errors
while accounting for commonly used optimizers (Adam and L-BFGS). The proposed
analysis method can be directly extended to other ML applications in science
and engineering. The code and data utilized in the analysis are posted publicly
to aid the reproduction and extension of this research.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
The physics-informed neural network (PINN) can avoid generating enormous amounts of data when solving forward problems.
A dynamically configured PINN-based topology optimization (DCPINN-TO) method is proposed.
The accuracy of the displacement prediction and optimization results indicate that the DCPINN-TO method is effective and efficient.
arXiv Detail & Related papers (2023-12-12T05:35:30Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it [1.3927943269211593]
PINNs are Neural Network architectures trained to emulate solutions of differential equations without the necessity of solution data.
We perform an empirical analysis of the behavior of PINN predictions outside their training domain.
We assess whether the algorithmic setup of PINNs can influence their potential for generalization and showcase the respective effect on the prediction.
arXiv Detail & Related papers (2023-02-15T09:51:56Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-17T23:21:53Z) - Advantage of Deep Neural Networks for Estimating Functions with
Singularity on Hypersurfaces [23.21591478556582]
We develop a minimax rate analysis to describe the reason that deep neural networks (DNNs) perform better than other standard methods.
This study tries to fill this gap by considering the estimation for a class of non-smooth functions that have singularities on hypersurfaces.
arXiv Detail & Related papers (2020-11-04T12:51:14Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.