Structured State Space Models for In-Context Reinforcement Learning
- URL: http://arxiv.org/abs/2303.03982v3
- Date: Thu, 23 Nov 2023 16:02:22 GMT
- Title: Structured State Space Models for In-Context Reinforcement Learning
- Authors: Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob
Foerster, Satinder Singh, Feryal Behbahani
- Abstract summary: Structured state space sequence (S4) models have recently achieved state-of-the-art performance on long-range sequence modeling tasks.
We propose a modification to a variant of S4 that enables us to initialise and reset the hidden state in parallel.
We show that our modified architecture runs faster than Transformers in sequence length and performs better than RNN's on a simple memory-based task.
- Score: 30.189834820419446
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Structured state space sequence (S4) models have recently achieved
state-of-the-art performance on long-range sequence modeling tasks. These
models also have fast inference speeds and parallelisable training, making them
potentially useful in many reinforcement learning settings. We propose a
modification to a variant of S4 that enables us to initialise and reset the
hidden state in parallel, allowing us to tackle reinforcement learning tasks.
We show that our modified architecture runs asymptotically faster than
Transformers in sequence length and performs better than RNN's on a simple
memory-based task. We evaluate our modified architecture on a set of
partially-observable environments and find that, in practice, our model
outperforms RNN's while also running over five times faster. Then, by
leveraging the model's ability to handle long-range sequences, we achieve
strong performance on a challenging meta-learning task in which the agent is
given a randomly-sampled continuous control environment, combined with a
randomly-sampled linear projection of the environment's observations and
actions. Furthermore, we show the resulting model can adapt to
out-of-distribution held-out tasks. Overall, the results presented in this
paper show that structured state space models are fast and performant for
in-context reinforcement learning tasks. We provide code at
https://github.com/luchris429/popjaxrl.
Related papers
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5 is an efficient variant for long-rangetemporal modeling.
It significantly outperforms Transformers and ConvNISTTM on a long horizon Moving-Lab experiment while training 3X faster than ConvLSTM and generating samples 400X faster than Transformers.
arXiv Detail & Related papers (2023-10-30T16:11:06Z) - Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors [44.5740422079]
We show that pretraining with standard denoising objectives leads to dramatic gains across multiple architectures.
In stark contrast to prior works, we find vanilla Transformers to match the performance of S4 on Long Range Arena when properly pretrained.
arXiv Detail & Related papers (2023-10-04T17:17:06Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
We propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE.
Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4.
We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets.
arXiv Detail & Related papers (2022-12-24T15:17:42Z) - Long Range Language Modeling via Gated State Spaces [67.64091993846269]
We focus on autoregressive sequence modeling over English books, Github source code and ArXiv mathematics articles.
We propose a new layer named Gated State Space (GSS) and show that it trains significantly faster than the diagonal version of S4.
arXiv Detail & Related papers (2022-06-27T01:50:18Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
arXiv Detail & Related papers (2022-05-03T11:52:54Z) - Efficiently Modeling Long Sequences with Structured State Spaces [15.456254157293836]
We propose a new sequence model based on a new parameterization for the fundamental state space model.
S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet.
arXiv Detail & Related papers (2021-10-31T03:32:18Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - The Untapped Potential of Off-the-Shelf Convolutional Neural Networks [29.205446247063673]
We show that existing off-the-shelf models like ResNet-50 are capable of over 95% accuracy on ImageNet.
This level of performance currently exceeds that of models with over 20x more parameters and significantly more complex training procedures.
arXiv Detail & Related papers (2021-03-17T20:04:46Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.