RLFlow: Optimising Neural Network Subgraph Transformation with World
Models
- URL: http://arxiv.org/abs/2205.01435v1
- Date: Tue, 3 May 2022 11:52:54 GMT
- Title: RLFlow: Optimising Neural Network Subgraph Transformation with World
Models
- Authors: Sean Parker, Sami Alabed and Eiko Yoneki
- Abstract summary: We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explored the use of reinforcement learning (RL) agents that can learn to
perform neural network subgraph transformations, without the need of expertly
designed heuristics to achieve a high level of performance. Reducing compute
requirements of deep learning models is a focus of extensive research and many
systems, optimisations and just-in-time (JIT) compilers have been proposed to
decrease runtime.
Recent work has aimed to apply reinforcement learning to computer systems
with some success, especially using model-free RL techniques. Model-based
reinforcement learning methods have seen an increased focus in research as they
can be used to learn the transition dynamics of the environment; this can be
leveraged to train an agent using the hallucinogenic environment, thereby
increasing sample efficiency compared to model-free approaches. Furthermore,
when using a world model as a simulated environment, batch rollouts can occur
safely in parallel and, especially in systems environments, it overcomes the
latency impact of updating system environments that can take orders of
magnitude longer to perform an action compared to simple emulators for video
games.
We propose a design for a model-based agent which learns to optimise the
architecture of neural networks by performing a sequence of subgraph
transformations to reduce model runtime. We show our approach can match the
performance of state of the art on common convolutional networks and outperform
those by up to 5% on transformer-style architectures.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Neuroevolution of Recurrent Architectures on Control Tasks [3.04585143845864]
We implement a massively parallel evolutionary algorithm and run experiments on all 19 OpenAI Gym state-based reinforcement learning control tasks.
We find that dynamic agents match or exceed the performance of gradient-based agents while utilizing orders of magnitude fewer parameters.
arXiv Detail & Related papers (2023-04-03T16:29:18Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
We propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation.
The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator.
arXiv Detail & Related papers (2021-06-16T01:25:51Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - The Untapped Potential of Off-the-Shelf Convolutional Neural Networks [29.205446247063673]
We show that existing off-the-shelf models like ResNet-50 are capable of over 95% accuracy on ImageNet.
This level of performance currently exceeds that of models with over 20x more parameters and significantly more complex training procedures.
arXiv Detail & Related papers (2021-03-17T20:04:46Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
We present a novel approach that captures the underlying dynamics of a system by incorporating control in a neural ordinary differential equation framework.
Results indicate that a simple DyNODE architecture when combined with an actor-critic reinforcement learning algorithm outperforms canonical neural networks.
arXiv Detail & Related papers (2020-09-09T12:56:58Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.