Decoupling Skill Learning from Robotic Control for Generalizable Object
Manipulation
- URL: http://arxiv.org/abs/2303.04016v2
- Date: Thu, 9 Mar 2023 07:14:20 GMT
- Title: Decoupling Skill Learning from Robotic Control for Generalizable Object
Manipulation
- Authors: Kai Lu, Bo Yang, Bing Wang, Andrew Markham
- Abstract summary: Recent works in robotic manipulation have shown potential for tackling a range of tasks.
We conjecture that this is due to the high-dimensional action space for joint control.
In this paper, we take an alternative approach and separate the task of learning 'what to do' from 'how to do it'
The whole-body robotic kinematic control is optimized to execute the high-dimensional joint motion to reach the goals in the workspace.
- Score: 35.34044822433743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works in robotic manipulation through reinforcement learning (RL) or
imitation learning (IL) have shown potential for tackling a range of tasks
e.g., opening a drawer or a cupboard. However, these techniques generalize
poorly to unseen objects. We conjecture that this is due to the
high-dimensional action space for joint control. In this paper, we take an
alternative approach and separate the task of learning 'what to do' from 'how
to do it' i.e., whole-body control. We pose the RL problem as one of
determining the skill dynamics for a disembodied virtual manipulator
interacting with articulated objects. The whole-body robotic kinematic control
is optimized to execute the high-dimensional joint motion to reach the goals in
the workspace. It does so by solving a quadratic programming (QP) model with
robotic singularity and kinematic constraints. Our experiments on manipulating
complex articulated objects show that the proposed approach is more
generalizable to unseen objects with large intra-class variations,
outperforming previous approaches. The evaluation results indicate that our
approach generates more compliant robotic motion and outperforms the pure RL
and IL baselines in task success rates. Additional information and videos are
available at https://kl-research.github.io/decoupskill
Related papers
- Hand-Object Interaction Pretraining from Videos [77.92637809322231]
We learn general robot manipulation priors from 3D hand-object interaction trajectories.
We do so by sharing both the human hand and the manipulated object in 3D space and human motions to robot actions.
We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches.
arXiv Detail & Related papers (2024-09-12T17:59:07Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - ManiFoundation Model for General-Purpose Robotic Manipulation of Contact Synthesis with Arbitrary Objects and Robots [24.035706461949715]
There is a pressing need to develop a model that enables general-purpose robots to undertake a broad spectrum of manipulation tasks.
Our work introduces a comprehensive framework to develop a foundation model for general robotic manipulation.
Our model achieves average success rates of around 90%.
arXiv Detail & Related papers (2024-05-11T09:18:37Z) - Entity-Centric Reinforcement Learning for Object Manipulation from Pixels [22.104757862869526]
Reinforcement Learning (RL) offers a general approach to learn object manipulation.
In practice, domains with more than a few objects are difficult for RL agents due to the curse of dimensionality.
We propose a structured approach for visual RL that is suitable for representing multiple objects and their interaction.
arXiv Detail & Related papers (2024-04-01T16:25:08Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - GAMMA: Generalizable Articulation Modeling and Manipulation for
Articulated Objects [53.965581080954905]
We propose a novel framework of Generalizable Articulation Modeling and Manipulating for Articulated Objects (GAMMA)
GAMMA learns both articulation modeling and grasp pose affordance from diverse articulated objects with different categories.
Results show that GAMMA significantly outperforms SOTA articulation modeling and manipulation algorithms in unseen and cross-category articulated objects.
arXiv Detail & Related papers (2023-09-28T08:57:14Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.