Deep Occupancy-Predictive Representations for Autonomous Driving
- URL: http://arxiv.org/abs/2303.04218v1
- Date: Tue, 7 Mar 2023 20:21:49 GMT
- Title: Deep Occupancy-Predictive Representations for Autonomous Driving
- Authors: Eivind Meyer, Lars Frederik Peiss, and Matthias Althoff
- Abstract summary: We show that our proposed architecture encodes the probabilistic occupancy map as a proxy for obtaining pre-trained state representations.
By leveraging a map-aware graph formulation of the environment, our agent-centric encoder generalizes to arbitrary road networks and traffic situations.
- Score: 6.591194329459251
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Manually specifying features that capture the diversity in traffic
environments is impractical. Consequently, learning-based agents cannot realize
their full potential as neural motion planners for autonomous vehicles.
Instead, this work proposes to learn which features are task-relevant. Given
its immediate relevance to motion planning, our proposed architecture encodes
the probabilistic occupancy map as a proxy for obtaining pre-trained state
representations. By leveraging a map-aware graph formulation of the
environment, our agent-centric encoder generalizes to arbitrary road networks
and traffic situations. We show that our approach significantly improves the
downstream performance of a reinforcement learning agent operating in urban
traffic environments.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - GINK: Graph-based Interaction-aware Kinodynamic Planning via
Reinforcement Learning for Autonomous Driving [10.782043595405831]
There are many challenges in applying deep reinforcement learning (D) to autonomous driving in a structured environment such as an urban area.
In this paper, we suggest a new framework that effectively combines graph-based intention representation and reinforcement learning for dynamic planning.
The experiments show the state-of-the-art performance of our approach compared to the existing baselines.
arXiv Detail & Related papers (2022-06-03T10:37:25Z) - StopNet: Scalable Trajectory and Occupancy Prediction for Urban
Autonomous Driving [14.281088967734098]
We introduce a motion forecasting (behavior prediction) method that meets the latency requirements for autonomous driving in dense urban environments without sacrificing accuracy.
A whole-scene sparse input representation allows StopNet to scale to predicting trajectories for hundreds of road agents with reliable latency.
In addition to predicting trajectories, our scene encoder lends itself to predicting whole-scene probabilistic occupancy grids.
arXiv Detail & Related papers (2022-06-02T11:22:27Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
We propose HATN, a hierarchical framework to generate high-quality, transferable, and adaptable predictions for driving behaviors.
We demonstrate our algorithms in the task of trajectory prediction for real traffic data at intersections and roundabouts from the INTERACTION dataset.
arXiv Detail & Related papers (2022-02-10T16:46:24Z) - Multi-modal Trajectory Prediction for Autonomous Driving with Semantic
Map and Dynamic Graph Attention Network [12.791191495432829]
There are several challenges in trajectory prediction in real-world traffic scenarios.
Inspired by people's natural habit of navigating traffic with attention to their goals and surroundings, this paper presents a unique graph attention network.
The network is designed to model the dynamic social interactions among agents and conform to traffic rules with a semantic map.
arXiv Detail & Related papers (2021-03-30T11:53:12Z) - Generalizing Decision Making for Automated Driving with an Invariant
Environment Representation using Deep Reinforcement Learning [55.41644538483948]
Current approaches either do not generalize well beyond the training data or are not capable to consider a variable number of traffic participants.
We propose an invariant environment representation from the perspective of the ego vehicle.
We show that the agents are capable to generalize successfully to unseen scenarios, due to the abstraction.
arXiv Detail & Related papers (2021-02-12T20:37:29Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.