論文の概要: STPDnet: Spatial-temporal convolutional primal dual network for dynamic
PET image reconstruction
- arxiv url: http://arxiv.org/abs/2303.04667v1
- Date: Wed, 8 Mar 2023 15:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 13:28:36.273070
- Title: STPDnet: Spatial-temporal convolutional primal dual network for dynamic
PET image reconstruction
- Title(参考訳): STPDnet : 動的PET画像再構成のための時空間畳み込み原始二重ネットワーク
- Authors: Rui Hu, Jianan Cui, Chengjin Yu, Yunmei Chen, Huafeng Liu
- Abstract要約: 動的PET画像再構成のための時空間畳み込みプライマリネットワーク(STPDnet)を提案する。
PETの物理投影は、ネットワークの反復学習プロセスに埋め込まれる。
実験の結果,提案手法は時間領域と空間領域の両方で大きなノイズを発生させることができることがわかった。
- 参考スコア(独自算出の注目度): 16.47493157003075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic positron emission tomography (dPET) image reconstruction is extremely
challenging due to the limited counts received in individual frame. In this
paper, we propose a spatial-temporal convolutional primal dual network
(STPDnet) for dynamic PET image reconstruction. Both spatial and temporal
correlations are encoded by 3D convolution operators. The physical projection
of PET is embedded in the iterative learning process of the network, which
provides the physical constraints and enhances interpretability. The
experiments of real rat scan data have shown that the proposed method can
achieve substantial noise reduction in both temporal and spatial domains and
outperform the maximum likelihood expectation maximization (MLEM),
spatial-temporal kernel method (KEM-ST), DeepPET and Learned Primal Dual (LPD).
- Abstract(参考訳): 動的ポジトロン・エミッション・トモグラフィ(dPET)画像再構成は,個々のフレームで受信する回数に制限があるため,極めて困難である。
本稿では,動的PET画像再構成のための時空間畳み込みプリミティブネットワーク(STPDnet)を提案する。
空間相関も時間相関も3次元畳み込み演算子によって符号化される。
PETの物理投影は、ネットワークの反復学習プロセスに埋め込まれ、物理的な制約を提供し、解釈可能性を高める。
実ラットスキャンデータを用いた実験により,提案手法は時間領域と空間領域の両方において実質的なノイズ低減を実現し,最大推定予測最大化(MLEM),空間時空間カーネル法(KEM-ST),DeepPET,Learted Primal Dual(LPD)よりも優れることが示された。
関連論文リスト
- Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3Dポイントクラウドシーケンスは、現実世界の環境における最も一般的で実用的な表現の1つとして機能する。
textitStructured Point Cloud Videos (SPCV) と呼ばれる新しい汎用表現を提案する。
SPCVは点雲列を空間的滑らかさと時間的一貫性を持つ2Dビデオとして再編成し、画素値は点の3D座標に対応する。
論文 参考訳(メタデータ) (2024-03-02T08:18:57Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFieldsは、複雑な時間的信号を効果的に表現するために設計された新しいネットワークのクラスである。
本稿では,ResFieldの特性を包括的に解析し,トレーニング可能なパラメータの数を減らすための行列分解手法を提案する。
スパースRGBDカメラからダイナミックな3Dシーンをキャプチャする効果を示すことで,ResFieldsの実用性を実証する。
論文 参考訳(メタデータ) (2023-09-06T16:59:36Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction
from Low-Dose Sinograms [45.24575167909925]
TriDoFormerは、シングラム、画像、周波数の3つのドメインを結合して直接再構成するトランスフォーマーベースのモデルである。
最先端の手法を質的に、定量的に上回る。
GFPは、周波数領域の周波数成分を調整するための学習可能な周波数フィルタとして機能し、ネットワークに高周波の詳細を復元させる。
論文 参考訳(メタデータ) (2023-08-10T06:20:00Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
部分走査は、磁気共鳴イメージング(MRI)データ取得を2次元および3次元の両方で加速する一般的な手法である。
本稿では,Faster Fourier Convolution (FasterFC) と呼ばれる新しい畳み込み演算子を提案する。
2次元加速MRI法であるFasterFC-End-to-End-VarNetは、FasterFCを用いて感度マップと再構成品質を改善する。
k空間領域再構成を誘導する単一グループアルゴリズムを用いたFasterFC-based Single-to-group Network (FAS-Net) と呼ばれる3次元加速MRI法
論文 参考訳(メタデータ) (2023-06-05T13:53:57Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Deep Domain Adversarial Adaptation for Photon-efficient Imaging Based on
Spatiotemporal Inception Network [11.58898808789911]
単光子LiDARでは、光子効率の撮像がシーンの3D構造を1ピクセル当たりの信号でキャプチャする。
このタスクの既存のディープラーニングモデルは、シミュレーションデータセットに基づいてトレーニングされている。
本研究では,空間的・時間的情報を完全に活用して,スパース・ハイノイズ光子計数ヒストグラムから奥行きを正確に予測できる光子効率イメージングのためのネットワーク(STIN)を提案する。
論文 参考訳(メタデータ) (2022-01-07T14:51:48Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
畳み込みニューラルネットワーク(CNN)は近年,PET画像再構成において顕著な性能を発揮している。
深層画像前処理を組み込んだ非教師なし直接PET画像再構成手法を提案する。
提案手法は,非教師なしPET画像再構成を実現するために,損失関数付き前方投影モデルを組み込んだ。
論文 参考訳(メタデータ) (2021-09-02T08:07:58Z) - Direct Reconstruction of Linear Parametric Images from Dynamic PET Using
Nonlocal Deep Image Prior [13.747210115485487]
PETシングラムからパラメトリック画像を直接推定する直接再構成法が開発されている。
受信回数が限られているため、信号対雑音比(SNR)と直接再構成フレームワークによって生成されたパラメトリック画像の解像度は依然として限られている。
近年,多数の高品質なトレーニングラベルが利用可能である場合に,医用画像復調・復調に教師付き深層学習法がうまく応用されている。
論文 参考訳(メタデータ) (2021-06-18T21:30:22Z) - FastPET: Near Real-Time PET Reconstruction from Histo-Images Using a
Neural Network [0.0]
本稿では,アーキテクチャ的にシンプルで,メモリ空間の効率の良い,新しい直接再構成畳み込みニューラルネットワークであるFastPETを提案する。
FastPETは、原データのヒストイメージ表現で動作し、3D画像ボリューム67倍の高速な再構成を可能にする。
以上の結果から, 再現は非常に高速であるだけでなく, 画像は反復的再構成よりも高品質で低ノイズであることがわかった。
論文 参考訳(メタデータ) (2020-02-11T20:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。