A Privacy Preserving System for Movie Recommendations Using Federated Learning
- URL: http://arxiv.org/abs/2303.04689v4
- Date: Thu, 16 May 2024 11:03:49 GMT
- Title: A Privacy Preserving System for Movie Recommendations Using Federated Learning
- Authors: David Neumann, Andreas Lutz, Karsten Müller, Wojciech Samek,
- Abstract summary: We present a recommender system for movie recommendations, which provides privacy and thus trustworthiness on multiple levels.
It is trained using federated learning and thus, by its very nature, privacy-preserving.
A novel federated learning scheme, called FedQ, is employed, which not only addresses the problem of non-i.i.d.-ness and small local datasets.
- Score: 12.751432553199628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems have become ubiquitous in the past years. They solve the tyranny of choice problem faced by many users, and are utilized by many online businesses to drive engagement and sales. Besides other criticisms, like creating filter bubbles within social networks, recommender systems are often reproved for collecting considerable amounts of personal data. However, to personalize recommendations, personal information is fundamentally required. A recent distributed learning scheme called federated learning has made it possible to learn from personal user data without its central collection. Consequently, we present a recommender system for movie recommendations, which provides privacy and thus trustworthiness on multiple levels: First and foremost, it is trained using federated learning and thus, by its very nature, privacy-preserving, while still enabling users to benefit from global insights. Furthermore, a novel federated learning scheme, called FedQ, is employed, which not only addresses the problem of non-i.i.d.-ness and small local datasets, but also prevents input data reconstruction attacks by aggregating client updates early. Finally, to reduce the communication overhead, compression is applied, which significantly compresses the exchanged neural network parametrizations to a fraction of their original size. We conjecture that this may also improve data privacy through its lossy quantization stage.
Related papers
- Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
We propose fusing social information with user-item interactions to alleviate it, which is the social recommendation problem.
We devise a novel framework textbfFedrated textbfSocial recommendation with textbfGraph neural network (FeSoG)
arXiv Detail & Related papers (2021-11-21T09:41:39Z) - Robbing the Fed: Directly Obtaining Private Data in Federated Learning
with Modified Models [56.0250919557652]
Federated learning has quickly gained popularity with its promises of increased user privacy and efficiency.
Previous attacks on user privacy have been limited in scope and do not scale to gradient updates aggregated over even a handful of data points.
We introduce a new threat model based on minimal but malicious modifications of the shared model architecture.
arXiv Detail & Related papers (2021-10-25T15:52:06Z) - Fidel: Reconstructing Private Training Samples from Weight Updates in
Federated Learning [0.0]
We evaluate a novel attack method within regular federated learning which we name the First Dense Layer Attack (Fidel)
We show how to recover on average twenty out of thirty private data samples from a client's model update employing a fully connected neural network.
arXiv Detail & Related papers (2021-01-01T04:00:23Z) - FedeRank: User Controlled Feedback with Federated Recommender Systems [4.474834288759608]
Data privacy is one of the most prominent concerns in the digital era.
We present FedeRank, a privacy-preserving distributed machine learning paradigm.
We show the effectiveness of FedeRank in terms of recommendation accuracy, even with a small portion of shared user data.
arXiv Detail & Related papers (2020-12-15T22:26:54Z) - A Novel Privacy-Preserved Recommender System Framework based on
Federated Learning [0.0]
This paper proposed a novel privacy-preserved recommender system framework (PPRSF)
The PPRSF not only able to reduces the privacy leakage risk, satisfies legal and regulatory requirements but also allows various recommendation algorithms to be applied.
arXiv Detail & Related papers (2020-11-11T08:07:58Z) - Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications [5.50791468454604]
Federated learning enables a population of clients, working with a trusted server, to collaboratively learn a shared machine learning model.
This reduces the risk of exposing sensitive data, but it is still possible to reverse engineer information about a client's private data set from communicated model parameters.
We present a privacy-preserving federated learning protocol to a non-specialist audience, demonstrate it using logistic regression on a real-world credit card fraud data set, and evaluate it using an open-source simulation platform.
arXiv Detail & Related papers (2020-10-12T17:16:27Z) - A Federated Multi-View Deep Learning Framework for Privacy-Preserving
Recommendations [25.484225182093947]
Privacy-preserving recommendations are gaining momentum due to concerns over user privacy and data security.
FedRec algorithms have been proposed to realize personalized privacy-preserving recommendations.
This paper presents FLMV-DSSM, a generic content-based federated multi-view recommendation framework.
arXiv Detail & Related papers (2020-08-25T04:19:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.