ChatGPT is on the Horizon: Could a Large Language Model be Suitable for
Intelligent Traffic Safety Research and Applications?
- URL: http://arxiv.org/abs/2303.05382v3
- Date: Tue, 5 Sep 2023 18:13:24 GMT
- Title: ChatGPT is on the Horizon: Could a Large Language Model be Suitable for
Intelligent Traffic Safety Research and Applications?
- Authors: Ou Zheng, Mohamed Abdel-Aty, Dongdong Wang, Zijin Wang, Shengxuan Ding
- Abstract summary: ChatGPT embarks on a new era of artificial intelligence and will revolutionize the way we approach intelligent traffic safety systems.
This paper begins with a brief introduction about the development of large language models (LLMs)
- Score: 2.5037019262278792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ChatGPT embarks on a new era of artificial intelligence and will
revolutionize the way we approach intelligent traffic safety systems. This
paper begins with a brief introduction about the development of large language
models (LLMs). Next, we exemplify using ChatGPT to address key traffic safety
issues. Furthermore, we discuss the controversies surrounding LLMs, raise
critical questions for their deployment, and provide our solutions. Moreover,
we propose an idea of multi-modality representation learning for smarter
traffic safety decision-making and open more questions for application
improvement. We believe that LLM will both shape and potentially facilitate
components of traffic safety research.
Related papers
- Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.
For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.
We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - A Survey on the Applications of Frontier AI, Foundation Models, and
Large Language Models to Intelligent Transportation Systems [8.017557640367938]
This survey paper explores the transformative influence of frontier AI, foundation models, and Large Language Models (LLMs) in the realm of Intelligent Transportation Systems (ITS)
It emphasizes their integral role in advancing transportation intelligence, optimizing traffic management, and contributing to the realization of smart cities.
arXiv Detail & Related papers (2024-01-12T10:29:48Z) - Open-TI: Open Traffic Intelligence with Augmented Language Model [23.22301632003752]
Open-TI is an innovative model targeting the goal of Turing Indistinguishable Traffic Intelligence.
It is the first method capable of conducting exhaustive traffic analysis from scratch.
Open-TI is able to conduct task-specific embodiment like training and adapting the traffic signal control policies.
arXiv Detail & Related papers (2023-12-30T11:50:11Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation
Models [10.904594811905778]
TrafficGPT is a fusion of ChatGPT and traffic foundation models.
By seamlessly intertwining large language model and traffic expertise, TrafficGPT offers a novel approach to leveraging AI capabilities in this domain.
arXiv Detail & Related papers (2023-09-13T04:47:43Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
We introduce HANS, a neuro-symbolic architecture for multi-modal context understanding.
We show how HANS addresses the challenges associated with traffic monitoring while being able to integrate with a wide range of reasoning methods.
arXiv Detail & Related papers (2022-08-31T17:47:22Z) - Machine Learning for Security in Vehicular Networks: A Comprehensive
Survey [4.010371060637208]
We present a comprehensive survey of ML-based techniques for different security issues in vehicular networks.
We propose a taxonomy of security attacks in vehicular networks and discuss various security challenges and requirements.
We explain the solution approaches and working principles of these ML techniques in addressing various security challenges.
arXiv Detail & Related papers (2021-05-31T15:15:03Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.