論文の概要: On the Expressiveness and Generalization of Hypergraph Neural Networks
- arxiv url: http://arxiv.org/abs/2303.05490v1
- Date: Thu, 9 Mar 2023 18:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 13:38:29.992763
- Title: On the Expressiveness and Generalization of Hypergraph Neural Networks
- Title(参考訳): ハイパーグラフニューラルネットワークの表現性と一般化について
- Authors: Zhezheng Luo, Jiayuan Mao, Joshua B. Tenenbaum, Leslie Pack Kaelbling
- Abstract要約: この拡張抽象化はハイパーグラフニューラルネットワーク(HyperGNN)の表現性、学習、および(構造的)一般化を分析するためのフレームワークを記述する。
具体的には、HyperGNNが有限データセットからどのように学習し、任意の入力サイズのグラフ推論問題に構造的に一般化するかに焦点を当てる。
- 参考スコア(独自算出の注目度): 77.65788763444877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This extended abstract describes a framework for analyzing the
expressiveness, learning, and (structural) generalization of hypergraph neural
networks (HyperGNNs). Specifically, we focus on how HyperGNNs can learn from
finite datasets and generalize structurally to graph reasoning problems of
arbitrary input sizes. Our first contribution is a fine-grained analysis of the
expressiveness of HyperGNNs, that is, the set of functions that they can
realize. Our result is a hierarchy of problems they can solve, defined in terms
of various hyperparameters such as depths and edge arities. Next, we analyze
the learning properties of these neural networks, especially focusing on how
they can be trained on a finite set of small graphs and generalize to larger
graphs, which we term structural generalization. Our theoretical results are
further supported by the empirical results.
- Abstract(参考訳): この拡張抽象化はハイパーグラフニューラルネットワーク(HyperGNN)の表現性、学習、および(構造的な)一般化を分析するためのフレームワークを記述する。
具体的には、HyperGNNが有限データセットからどのように学習し、任意の入力サイズのグラフ推論問題に構造的に一般化するかに焦点を当てる。
私たちの最初の貢献は、ハイパーgnnの表現力、すなわち彼らが実現できる関数の集合の詳細な分析です。
我々の結果はそれらが解決できる問題の階層であり、深さやエッジアリティといった様々なハイパーパラメータで定義される。
次に、これらのニューラルネットワークの学習特性を解析し、特に、有限個の小さなグラフでトレーニングし、より大きなグラフに一般化する方法に注目し、構造一般化と呼ぶ。
我々の理論的結果は経験的結果によってさらに支持される。
関連論文リスト
- Towards Bridging Generalization and Expressivity of Graph Neural Networks [11.560730203511111]
グラフニューラルネットワーク(GNN)における表現性と一般化の関係について検討する。
本稿では,GNNの一般化と,それらが捉えることのできるグラフ構造の分散を結合する新しいフレームワークを提案する。
我々は,クラス内濃度とクラス間分離のトレードオフを明らかにする。
論文 参考訳(メタデータ) (2024-10-14T00:31:16Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - What functions can Graph Neural Networks compute on random graphs? The
role of Positional Encoding [0.0]
我々は,グラフニューラルネットワーク(GNN)の大規模グラフに対する理論的理解を深めることを目指しており,その表現力に着目している。
近年、GNNは、非常に一般的なランダムグラフモデルにおいて、ノード数が増加するにつれて、特定の関数に収束することを示した。
論文 参考訳(メタデータ) (2023-05-24T07:09:53Z) - PGX: A Multi-level GNN Explanation Framework Based on Separate Knowledge
Distillation Processes [0.2005299372367689]
本稿では,GNNがグラフデータにおける複数のコンポーネントのマルチモーダル学習プロセスであることを示す,多段階GNN説明フレームワークを提案する。
元の問題の複雑さは、階層構造として表される複数の部分部分に分解することで緩和される。
このフレームワークはユーザの好みに基づいて異なる結果を生成することができるため、パーソナライズされた説明も目的としている。
論文 参考訳(メタデータ) (2022-08-05T10:14:48Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural
Networks [13.518582483147325]
本稿では,トランスダクティブ推論の文脈におけるニューラルネットワークの性能を厳密に分析する。
本稿では, ブロックモデルに対するグラフ畳み込みネットワークの一般化特性について, トランスダクティブなRademacher複雑性が説明できることを示す。
論文 参考訳(メタデータ) (2021-12-07T20:06:23Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。