論文の概要: EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models
- arxiv url: http://arxiv.org/abs/2303.05656v2
- Date: Mon, 18 Mar 2024 13:34:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 01:40:47.404807
- Title: EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models
- Title(参考訳): EHRDiff:拡散モデルによるリアルなEHR合成の探索
- Authors: Hongyi Yuan, Songchi Zhou, Sheng Yu,
- Abstract要約: プライバシー上の懸念は、研究者のための高品質で大規模なEHRデータへのアクセスを制限している。
近年の研究では、生成モデリング技術による現実的なEHRデータの合成が研究されている。
本研究では, EHRデータ合成における拡散モデルの可能性について検討し, 新たな手法である EHRDiff を提案する。
- 参考スコア(独自算出の注目度): 8.799590232822752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic health records (EHR) contain a wealth of biomedical information, serving as valuable resources for the development of precision medicine systems. However, privacy concerns have resulted in limited access to high-quality and large-scale EHR data for researchers, impeding progress in methodological development. Recent research has delved into synthesizing realistic EHR data through generative modeling techniques, where a majority of proposed methods relied on generative adversarial networks (GAN) and their variants for EHR synthesis. Despite GAN-based methods attaining state-of-the-art performance in generating EHR data, these approaches are difficult to train and prone to mode collapse. Recently introduced in generative modeling, diffusion models have established cutting-edge performance in image generation, but their efficacy in EHR data synthesis remains largely unexplored. In this study, we investigate the potential of diffusion models for EHR data synthesis and introduce a novel method, EHRDiff. Through extensive experiments, EHRDiff establishes new state-of-the-art quality for synthetic EHR data, protecting private information in the meanwhile.
- Abstract(参考訳): 電子健康記録(EHR)には、精密医療システムの開発のための貴重な資源として、豊富な生物医学情報が含まれている。
しかしながら、プライバシに関する懸念は、研究者のための高品質で大規模なEHRデータへのアクセスを制限し、方法論の発展を妨げている。
近年の研究では、生成的モデリング技術による現実的なEHRデータの合成が試みられ、提案手法の大半は、生成的敵対的ネットワーク(GAN)とそのEHR合成のバリエーションに依存している。
GANに基づく手法はEHRデータの生成における最先端性能を実現するが、これらの手法は訓練が困難であり、モード崩壊の傾向にある。
近年, 画像生成において拡散モデルにより最先端の性能が確立されているが, EHRデータ合成における有効性は未解明のままである。
本研究では, EHRデータ合成における拡散モデルの可能性について検討し, 新たな手法である EHRDiff を提案する。
広範な実験を通じて、EHRDiffは、合成されたEHRデータのための新しい最先端の品質を確立し、一方でプライベート情報を保護する。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRは、病気の進行予測、臨床試験設計、健康経済学と結果研究など、多くの計算医学の応用を可能にする中心的なデータソースである。
幅広いユーザビリティにもかかわらず、その繊細な性質はプライバシーと秘密の懸念を高め、潜在的なユースケースを制限する。
これらの課題に対処するために,人工的かつ現実的なEHRを合成するための生成モデルの利用について検討する。
論文 参考訳(メタデータ) (2024-04-18T16:50:46Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
本稿では,多様な入力モダリティと融合戦略を符号化する最適なモデルアーキテクチャを自動検索する,AutoFMという新しいニューラルネットワーク探索フレームワークを提案する。
我々は実世界のマルチモーダルEHRデータと予測タスクについて徹底的な実験を行い、その結果、我々のフレームワークが既存の最先端手法よりも大幅な性能向上を実現していることを示す。
論文 参考訳(メタデータ) (2024-01-20T15:14:14Z) - Reliable Generation of Privacy-preserving Synthetic Electronic Health Record Time Series via Diffusion Models [4.240899165468488]
電子健康記録(Electronic Health Records, EHRs)は、患者レベルの豊富なデータソースであり、医療データ分析に有用なリソースを提供する。
しかしながら、プライバシー上の懸念はしばしばEHRへのアクセスを制限し、下流の分析を妨げる。
本研究では,現実的かつプライバシに保護された合成ERH時系列を効率的に生成することで,これらの課題を克服することを目的とする。
論文 参考訳(メタデータ) (2023-10-23T18:56:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - MedDiff: Generating Electronic Health Records using Accelerated
Denoising Diffusion Model [5.677138915301383]
電子健康記録への最初の応用である拡散モデルに基づく新しい生成モデルを提案する。
本モデルでは,ラベル情報を保存するために,クラス条件サンプリングを行う機構を提案する。
論文 参考訳(メタデータ) (2023-02-08T22:06:34Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
EHR-M-GAN (Generative Adversarial Network, GAN) は、EHRデータを合成する。
EHR-M-GANは,141,488名の患者を対象とし,3つの公用集中治療単位データベース上で検証した。
論文 参考訳(メタデータ) (2021-12-22T17:17:34Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。