論文の概要: 3D Cinemagraphy from a Single Image
- arxiv url: http://arxiv.org/abs/2303.05724v1
- Date: Fri, 10 Mar 2023 06:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 15:58:13.045724
- Title: 3D Cinemagraphy from a Single Image
- Title(参考訳): 単一画像からの3次元撮影
- Authors: Xingyi Li, Zhiguo Cao, Huiqiang Sun, Jianming Zhang, Ke Xian, Guosheng
Lin
- Abstract要約: 3Dシネマグラフィー(3D Cinemagraphy)は、3D画像と2Dアニメーションを融合させる新しい技術である。
静止画1枚を入力として、視覚コンテンツアニメーションとカメラモーションの両方を含むビデオを生成することを目標としています。
- 参考スコア(独自算出の注目度): 73.09720823592092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present 3D Cinemagraphy, a new technique that marries 2D image animation
with 3D photography. Given a single still image as input, our goal is to
generate a video that contains both visual content animation and camera motion.
We empirically find that naively combining existing 2D image animation and 3D
photography methods leads to obvious artifacts or inconsistent animation. Our
key insight is that representing and animating the scene in 3D space offers a
natural solution to this task. To this end, we first convert the input image
into feature-based layered depth images using predicted depth values, followed
by unprojecting them to a feature point cloud. To animate the scene, we perform
motion estimation and lift the 2D motion into the 3D scene flow. Finally, to
resolve the problem of hole emergence as points move forward, we propose to
bidirectionally displace the point cloud as per the scene flow and synthesize
novel views by separately projecting them into target image planes and blending
the results. Extensive experiments demonstrate the effectiveness of our method.
A user study is also conducted to validate the compelling rendering results of
our method.
- Abstract(参考訳): 3Dシネマグラフィー(3D Cinemagraphy)は,2Dアニメーションと3D写真を組み合わせる新しい技術である。
静止画1枚を入力として、視覚コンテンツアニメーションとカメラモーションの両方を含むビデオを生成することが目的です。
既存の2D画像アニメーションと3D写真手法を組み合わせることで、明らかなアーティファクトや一貫性のないアニメーションにつながることを実証的に見出した。
私たちの重要な洞察は、3D空間におけるシーンの表現とアニメーションが、このタスクに自然な解決策をもたらすということです。
この目的のために,まず入力画像を予測深度値を用いて特徴ベースの層状深度画像に変換し,続いて特徴点雲に投影する。
シーンをアニメーションするために、動作推定を行い、3次元シーンフローに2次元の動きを持ち上げる。
最後に, 点の進行に伴う穴の開きの問題を解決するため, シーンの流れに従って点雲を双方向に切り離し, 対象画像平面に別々に投影し, 結果をブレンドすることによって, 新たなビューを合成することを提案する。
広範な実験により本手法の有効性が実証された。
また,本手法の説得力のあるレンダリング結果を検証するため,ユーザ調査を行った。
関連論文リスト
- Sketch2Scene: Automatic Generation of Interactive 3D Game Scenes from User's Casual Sketches [50.51643519253066]
3Dコンテンツ生成は、ビデオゲーム、映画制作、バーチャルおよび拡張現実など、多くのコンピュータグラフィックスアプリケーションの中心にある。
本稿では,インタラクティブでプレイ可能な3Dゲームシーンを自動的に生成するための,新しいディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-08T16:27:37Z) - LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field [13.815932949774858]
シネマグラフ(Cinemagraph)は、静止画と微妙な動きの要素を組み合わせた視覚メディアの一種である。
本稿では,3次元ガウスモデルを用いて,2次元画像空間から3次元空間への撮影画像の高次化を提案する。
実験の結果,提案手法の有効性を検証し,高品質で視覚的に魅力的なシーン生成を実証した。
論文 参考訳(メタデータ) (2024-04-13T11:07:53Z) - Synthesizing Moving People with 3D Control [88.68284137105654]
対象とする3次元運動系列の単一画像から人物をアニメーションする拡散モデルに基づくフレームワークを提案する。
まず,1つの画像が与えられた人の見えない部分を幻覚させる拡散モデルについて学習する。
第2に,3次元人間のポーズによって制御される拡散に基づくレンダリングパイプラインを開発する。
論文 参考訳(メタデータ) (2024-01-19T18:59:11Z) - Make-It-4D: Synthesizing a Consistent Long-Term Dynamic Scene Video from
a Single Image [59.18564636990079]
本研究では,1枚の画像のみから長期ダイナミック映像を合成する問題について検討する。
既存の方法は、一貫性のない永遠の視点を幻覚させるか、長いカメラの軌跡に苦しむかのいずれかである。
一つの画像から一貫した長期動画像を生成する新しい方法であるMake-It-4Dを提案する。
論文 参考訳(メタデータ) (2023-08-20T12:53:50Z) - Unsupervised Volumetric Animation [54.52012366520807]
非剛性変形物体の教師なし3次元アニメーションのための新しい手法を提案する。
本手法は,RGBビデオのみからオブジェクトの3次元構造とダイナミックスを学習する。
我々は,本モデルを用いて,単一ボリュームまたは少数の画像からアニマタブルな3Dオブジェクトを得ることができることを示す。
論文 参考訳(メタデータ) (2023-01-26T18:58:54Z) - 3D Moments from Near-Duplicate Photos [67.15199743223332]
3D Momentsは、新しい計算写真効果だ。
1枚目から2枚目までのシーンの動きを円滑に補間するビデオを作成する。
本システムは,モーションパララックスとシーンダイナミックスを併用したフォトリアリスティックな時空ビデオを生成する。
論文 参考訳(メタデータ) (2022-05-12T17:56:18Z) - Unsupervised object-centric video generation and decomposition in 3D [36.08064849807464]
本研究では,複数の3Dオブジェクトと3D背景を持つシーンを移動しながら映像を映像としてモデル化することを提案する。
我々のモデルは、監督なしに単眼ビデオから訓練されるが、複数の動く物体を含むコヒーレントな3Dシーンを生成することを学ぶ。
論文 参考訳(メタデータ) (2020-07-07T18:01:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。