A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms
- URL: http://arxiv.org/abs/2303.06058v3
- Date: Wed, 13 Nov 2024 10:09:25 GMT
- Title: A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms
- Authors: Dorian Baudry, Kazuya Suzuki, Junya Honda,
- Abstract summary: We revisit two famous bandit algorithms, Minimum Empirical Divergence (MED) and Thompson Sampling (TS)
We prove that MED is optimal for all these models, but also provide a simple regret analysis of some TS algorithms for which the optimality is already known.
- Score: 14.33758865948252
- License:
- Abstract: In this paper we propose a general methodology to derive regret bounds for randomized multi-armed bandit algorithms. It consists in checking a set of sufficient conditions on the sampling probability of each arm and on the family of distributions to prove a logarithmic regret. As a direct application we revisit two famous bandit algorithms, Minimum Empirical Divergence (MED) and Thompson Sampling (TS), under various models for the distributions including single parameter exponential families, Gaussian distributions, bounded distributions, or distributions satisfying some conditions on their moments. In particular, we prove that MED is asymptotically optimal for all these models, but also provide a simple regret analysis of some TS algorithms for which the optimality is already known. We then further illustrate the interest of our approach, by analyzing a new Non-Parametric TS algorithm (h-NPTS), adapted to some families of unbounded reward distributions with a bounded h-moment. This model can for instance capture some non-parametric families of distributions whose variance is upper bounded by a known constant.
Related papers
- On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
We introduce a novel class of algorithms to efficiently approximate the unknown return distributions in policy evaluation problems from distributional reinforcement learning (DRL)
For a plain instance of our proposed class of algorithms we prove error bounds, both within Wasserstein and Kolmogorov--Smirnov distances.
For return distributions having probability density functions the algorithms yield approximations for these densities; error bounds are given within supremum norm.
arXiv Detail & Related papers (2024-07-19T10:06:01Z) - Score-based generative models break the curse of dimensionality in
learning a family of sub-Gaussian probability distributions [5.801621787540268]
We introduce a notion of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure.
We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution.
An essential ingredient of our proof is to derive a dimension-free deep neural network approximation rate for the true score function associated with the forward process.
arXiv Detail & Related papers (2024-02-12T22:02:23Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Finite-Time Regret of Thompson Sampling Algorithms for Exponential
Family Multi-Armed Bandits [88.21288104408556]
We study the regret of Thompson sampling (TS) algorithms for exponential family bandits, where the reward distribution is from a one-dimensional exponential family.
We propose a Thompson sampling, termed Expulli, which uses a novel sampling distribution to avoid the under-estimation of the optimal arm.
arXiv Detail & Related papers (2022-06-07T18:08:21Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
We study a generic Dirichlet Sampling (DS) algorithm, based on pairwise comparisons of empirical indices computed with re-sampling of the arms' observations.
We show that different variants of this strategy achieve provably optimal regret guarantees when the distributions are bounded and logarithmic regret for semi-bounded distributions with a mild quantile condition.
arXiv Detail & Related papers (2021-11-18T14:34:21Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
We introduce a new scalable approximation for Gaussian processes with provable guarantees which hold simultaneously over its entire parameter space.
Our approximation is obtained from an improved sample complexity analysis for sparse spectrum Gaussian processes (SSGPs)
arXiv Detail & Related papers (2020-11-17T05:41:50Z) - Lower bounds in multiple testing: A framework based on derandomized
proxies [107.69746750639584]
This paper introduces an analysis strategy based on derandomization, illustrated by applications to various concrete models.
We provide numerical simulations of some of these lower bounds, and show a close relation to the actual performance of the Benjamini-Hochberg (BH) algorithm.
arXiv Detail & Related papers (2020-05-07T19:59:51Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
We develop Thompson Sampling-style algorithms for mean-variance MAB.
We also provide comprehensive regret analyses for Gaussian and Bernoulli bandits.
Our algorithms significantly outperform existing LCB-based algorithms for all risk tolerances.
arXiv Detail & Related papers (2020-02-01T15:33:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.