A Quantum Outlier Theorem
- URL: http://arxiv.org/abs/2303.06256v1
- Date: Sat, 11 Mar 2023 00:35:33 GMT
- Title: A Quantum Outlier Theorem
- Authors: Samuel Epstein
- Abstract summary: In large rank projectors must contain pure quantum states in their images that are outlying states.
quantum coding schemes that use projections, such as Schumacher compression, must communicate using outlier quantum states.
- Score: 12.18340575383456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent results, it has been proven that all sampling methods produce
outliers. In this paper, we extend these results to quantum information theory.
Projectors of large rank must contain pure quantum states in their images that
are outlying states. Otherwise, the projectors are exotic, in that they have
high mutual information with the halting sequence. Thus quantum coding schemes
that use projections, such as Schumacher compression, must communicate using
outlier quantum states.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Digital Quantum Simulation and Circuit Learning for the Generation of
Coherent States [1.4153418423656923]
Two ways to digitally prepare coherent states in quantum circuits are introduced.
The high fidelity of the digitally generated coherent states is verified.
The simulation results show that quantum circuit learning can provide high fidelity on learning coherent states by choosing appropriate ansatzes.
arXiv Detail & Related papers (2022-10-30T09:06:21Z) - Quantum Non-Gaussianity From An Indefinite Causal Order of Gaussian
Operations [0.0]
Quantum Non-Gaussian states are considered as a useful resource for many tasks in quantum information processing.
We are addressing to be very useful to engineer highly non-Gaussian states from operations whose order is controlled by degrees of freedom of a control qubit.
arXiv Detail & Related papers (2021-08-30T09:20:17Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Sampling random quantum circuits: a pedestrian's guide [0.0]
Recent experiments completed by collaborating research groups from Google, NASA Ames, UC Santa Barbara, and others provided compelling evidence that quantum supremacy has been achieved on a superconducting quantum processor.
Unfortunately, understanding how this theoretical basis can be used to define quantum supremacy is an extremely difficult task.
This article is an attempt to alleviate this difficulty in those who wish to understand the theoretical basis of Google's quantum supremacy experiments, by carefully walking through a derivation of their precise mathematical definition of quantum supremacy.
arXiv Detail & Related papers (2020-07-10T19:26:08Z) - Quantum supremacy in driven quantum many-body systems [0.0]
We show that quantum supremacy can be obtained in generic periodically-driven quantum many-body systems.
Our proposal opens the way for a large class of quantum platforms to demonstrate and benchmark quantum supremacy.
arXiv Detail & Related papers (2020-02-27T07:20:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.