Anomaly Detection with Ensemble of Encoder and Decoder
- URL: http://arxiv.org/abs/2303.06431v1
- Date: Sat, 11 Mar 2023 15:49:29 GMT
- Title: Anomaly Detection with Ensemble of Encoder and Decoder
- Authors: Xijuan Sun, Di Wu, Arnaud Zinflou, Benoit Boulet
- Abstract summary: Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
- Score: 2.8199078343161266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hacking and false data injection from adversaries can threaten power grids'
everyday operations and cause significant economic loss. Anomaly detection in
power grids aims to detect and discriminate anomalies caused by cyber attacks
against the power system, which is essential for keeping power grids working
correctly and efficiently. Different methods have been applied for anomaly
detection, such as statistical methods and machine learning-based methods.
Usually, machine learning-based methods need to model the normal data
distribution. In this work, we propose a novel anomaly detection method by
modeling the data distribution of normal samples via multiple encoders and
decoders. Specifically, the proposed method maps input samples into a latent
space and then reconstructs output samples from latent vectors. The extra
encoder finally maps reconstructed samples to latent representations. During
the training phase, we optimize parameters by minimizing the reconstruction
loss and encoding loss. Training samples are re-weighted to focus more on
missed correlations between features of normal data. Furthermore, we employ the
long short-term memory model as encoders and decoders to test its
effectiveness. We also investigate a meta-learning-based framework for
hyper-parameter tuning of our approach. Experiment results on network intrusion
and power system datasets demonstrate the effectiveness of our proposed method,
where our models consistently outperform all baselines.
Related papers
- Efficient learning of differential network in multi-source non-paranormal graphical models [2.5905193932831585]
This paper addresses learning of sparse structural changes or differential network between two classes of non-paranormal graphical models.
Our strategy in combining datasets from multiple sources is shown to be very effective in inferring differential network in real-world problems.
arXiv Detail & Related papers (2024-10-03T13:59:38Z) - Unsupervised textile defect detection using convolutional neural
networks [0.0]
We propose a novel motif-based approach for unsupervised textile anomaly detection.
It combines the benefits of traditional convolutional neural networks with those of an unsupervised learning paradigm.
We demonstrate the effectiveness of our approach on the Patterned Fabrics benchmark dataset.
arXiv Detail & Related papers (2023-11-30T22:08:06Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.